This page is a sub-page of our page on Entropy.
///////
Related KMR-pages:
• Shannon Entropy
• Historic Entropy
• BioEntropy
• Laurent expansion of Time
///////
Other relevant sources of information:
• Category Theory
• Topos
• Subobject classifier
• Gregory Bateson
///////
The power of thinking is knowing what not to think about:
\, {T_{hinking}}^{P_{ower}} \, = \, \{ \, f \, : \, P_{ower} \, \xrightarrow[ \; no \; ]{ \; yes \; } \, T_{hinking} \, = \, \{ \, f \, : \, P_{ower} \, \xrightarrow[ \; disregard \; ]{ \; focus \ on \; } \, T_{hinking}\, \} \, [ \, {T_{hinking}}^{\bold{2}} \, ]_{R_{elations}} \, \mapsto \, \left< \, B_{inary} \, T_{hinking} \, \right>_{R_{elations}} \, \mapsto \, \left< \, m_{ultigraph} \, \right>_{R_{elations}} \, \, [ \, {T_{hinking}}^{\bold{3}} \, ]_{R_{elations}} \, \mapsto \, \left< \, T_{ernary} \, T_{hinking} \, \right>_{R_{elations}} \, \mapsto \, \left< \, h_{ypergraph} \, \right>_{R_{elations}} \, \, [ \, {T_{hinking}}^{\bold{\Omega}} \, ]_{R_{elations}} \, \mapsto \, \left< \, E_{volutionary} \, T_{hinking} \, \right>_{R_{elations}} \,<p>
Evolutionary entropy 1:
Options-generating function:
Evolutionary entropy 2:
Evolutionary entropy 3:
By including the \, N_{ext} \, term which corresponds to \, i = i \,
we have
/////////