This page is a sub-page of our page on Algebra.
///////
The sub-pages of this page are:
• Socially Responsible Algebra
///////
Related pages:
• Mathematics is Representation
• Knowledge Algebra
• Business Algebra
• Social Calculus
• Discourse Algebra
• Activities and Participators 
///////
The notation used below is explained in our section on Business Algebra.
///////
 \, M_e \, \stackrel {\mathrm{def}}{=} \, {\sum\limits_{m_e \, \in \, S_{ociety} }} m_e \, 
 \, M_e \, \equiv \, {(M_e)}_{Atomic} \oplus {(M_e)}_{Agregated} \;\; \equiv \, {\sum\limits_{m_e \, \in \, {(M_e)}_{Atomic}}^{ \text {} }} m_e \;\; \oplus \, {\sum\limits_{m_e \, \in \, {(M_e)}_{Aggregated}}^{ \text {} }} m_e 
 \, {(W_e)}_{Formal} \, \stackrel {\mathrm{def}}{=} \, {\sum\limits_{w_e( \, m^1_e \, ) \, : \, m_e( \, w_e(\, m^1_e \, ) \, ) \, \neq \; \emptyset }} \,\, w_e(\, m^1_e \, ) \, 
 \, {(W_e)}_{Informal} \, \stackrel {\mathrm{def}}{=} \, {\sum\limits_{w_e( \, m^1_e \, ) \, : \, m_e( \, w_e(\, m^1_e \, ) \, ) \, = \; \emptyset }} \,\, w_e(\, m^1_e \, ) \, 
 \, W_e \, \stackrel {\mathrm{def}}{=} \, {(W_e)}_{Formal} \oplus {(W_e)}_{Informal} \, 
/////// 
 \, i_{ntra}^{ \, m^1_e } \, 
 \, i_{nter}^{ \, m^1_e } \, 
 \, s_{upra}^{ \, m^1_e } \, 
 
 \, 1 \, 
///////
///////
///////
 \, F_{ormal}N_{ational}P_{roduct} \, \stackrel {\mathrm{def}}{=} \, {\sum\limits_{m_e \, \in \, M_e \, \in \, N_{ation}}^{ \text {} }}{c_{ontributions}}( m_e ) \, 
 
 \, F_{ormal}I_{nternational}P_{roduct} \, \stackrel {\mathrm{def}}{=} \, {\sum\limits_{m_e \, \in \, M_e \, \in \, W_{orld}}^{ \text {} }}{c_{ontributions}}( m_e ) \, 
 
 \, I_{nformal}N_{ational}P_{roduct} \, \stackrel {\mathrm{def}}{=} \, {\sum\limits_{m_e \, \in \, {(W_e)}_{Informal} \, \in \, N_{ation}}^{ \text {} }}{c_{ontributions}}( m_e ) \, 
 
 \, I_{nformal}I_{nternational}P_{roduct} \, \stackrel {\mathrm{def}}{=} \, {\sum\limits_{m_e \, \in \, {(W_e)}_{Informal} \, \in \, W_{orld}}^{ \text {} }}{c_{ontributions}}( m_e ) \, 
/////// 
 \, A_{gents} \, = \, ( \, P_{hysical} \oplus L_{egal} \oplus I_{nformal} \, ) \, B_{odies} \, = \, 
 \, = \, P_{hysical}B_{odies} \oplus L_{egal}B_{odies} \oplus I_{nformal}B_{odies} \, = \, 
 \, = \, H_{umans} \oplus M_{achines} \oplus O_{rganizations} \oplus N_{etworks} \, 
///////
 \, i_{ntra}^{ \, m_e } \, 
 \, i_{nter}^{ \, m_e } \, 
 \, s_{upra}^{ \, m_e } \, 
///////
 \, m_e^{ \, i_{ntra} } \, 
 \, m_e^{ \, i_{nter} } \, 
 \, m_e^{ \, s_{upra} } \, 
///////
 \, r_{eact} \, = \, i_{nterpret} \, = \, m_e^{ \, i_n } \, = \, \lim\limits_{m_e} \, i_n \, 
 \, a_{ct} \, = \, r_{espond} \, = \, o_{ut}^{ \, m_e } \, = \, \mathrm {co} \lim\limits_{m_e} \, o_{ut} \, 
/////// 
 \, i_{ntra} \, 
 \, i_{nter} \, 
 \, s_{upra} \, 
///////   
///////
A conversational feedback loop in Knowledge Loop Algebra 
 between the communities  \, {C_{om}}_1  \,  and  \, {C_{om}}_2 \,  using the  \, O_{utside} \,  protocol : 
 \, \langle \, {O_{utside}}_{input} \, \vert \vert \, {C_{om}}_1 \, \rangle \langle \, {C_{om}}_1 \, \vert \vert \, {O_{utside}}_{output} \, \rangle \langle \, {O_{utside}}_{input} \, \vert \vert \, {C_{om}}_2 \, \rangle \langle \, {C_{om}}_2 \, \vert \vert \, {O_{utside}}_{output} \, \rangle \, 
///////
The \, N_{ew} \, interface emulated by an \, O_{ld} \, implementation
 \, \langle \, N_{ew_{input}} \, \vert \vert \, N_{ew_{output}} \, \rangle \, = \, \overbrace{\langle \, N_{ew_{input}} \, \vert \vert \, O_{ld_{input}} \, \rangle}^{\text{transform}} \overbrace{\langle \, O_{ld_{input}} \, \vert \vert \, O_{ld_{output}} \, \rangle}^{\text{solve}} \overbrace{\langle \, O_{ld_{output}} \, \vert \vert \, N_{ew_{output}} \, \rangle}^{\text{invert}} \, =  
 
 \, = \, \overbrace{\langle \, N_{ew_{input}} \, \vert \vert \, O_{ld_{input}} \, \rangle}^{\text{translate input}} \overbrace{\langle \, O_{ld_{input}} \, \vert \vert \, O_{ld_1} \, \rangle \langle \, O_{ld_1} \, \vert \vert \, O_{ld_2} \, \rangle \langle \, O_{ld_2} \, \vert \, \cdots \, \vert \, O_{ld_n} \, \rangle}^{\text{the n milestones of the old solution process}} \overbrace{\langle \, O_{ld_{output}} \, \vert \vert \, N_{ew_{output}} \, \rangle}^{\text{translate output}} 
NOTE: This formula assumes that  \, O_{ld_n} \, \equiv \, O_{ld_{output}} .
• Foresight and hindsight process manager
• The EE(S+O+C)(M+O+P) Model
• The Ericsson AXE10 Delay  
///////
The TELL ME Innovation Cycle 1:
The TELL ME Innovation Cycle 2:
///////










