This page is a sub-page of our page on Knowledge Algebra.
Related KMR pages:
• Business Algebra
• Social Algebra 
///////
Tänk och Känn:
///////
Community: C = (A, P)
Activities: A = \{ A_1, A_2, \ldots, A_{n} \}
Participators: P = \{ P_1, P_2, \ldots, P_{m} \}
Def: P_{k} \in A_{i} if the participator P_{k} takes part in the activity A_{i} .
Def: A_{i} \in P_{k} if the activity A_{i} includes the participator P_{k} .
======
Definition of boolean factors:
 (P_{k} \in A_{i}) = 1 \qquad\text{if}\qquad P_{k} \in A_{i} 
 (P_{k} \in A_{i}) = 0 \qquad\text{if}\qquad P_{k} \not\in A_{i} 
======
Hence:
The number of participators of an activity:
 |A_{i}|_P = \sum_{k=1}^m (P_{k} \in A_{i}) 
The number of activities of a participator:
 |P_{k}|_A = \sum_{i=1}^n (P_{k} \in A_{i}) 
=======
Def: The participators-of-activities list:
 \sum_{i=1}^n  P_{A_{i}} A_{i} 
Def: The activities-of-participators list:
 \sum_{k=1}^m  A_{P_{k}} P_{k} 
Def: The activity-person bilinear form:
 \sum_{i=1}^n\sum_{k=1}^m  A_{i} P_{k} (P_{k} \in A_{i}) 
=======
Definition of ordinal numbers:
 0 = \emptyset 
 1 = \{\emptyset \} \ = \{0\} 
 2  = \{0, 1\} 
 3 = \{0, 1, 2\} 
 \ldots 
 n = \{0, 1, \ldots, n-1\} 
 \ldots 
=======
The possible participator grouping polynomial
(of an activity  A_{i} ):
 \prod_{k=1}^m (1-P_{k})(P_{k} \in A_{i}) A_{i} 
The participator grouping coefficient
(of an activity  A_{i} ):
 G_{A_{i}} = \prod_{j=1}^m \prod_{s \in {\prod_{}^j}m} P_{s}(P_{s} \in A_{i}) 
The participator grouping term
(of an activity  A_{i} ):
 G_{A_{i}} A_{i} 
The group-involvement polynomial
(of the activities of A):
 \sum_{i=1}^n G_{A_{i}} A_{i} 
=======
The activity merger polynomial of the organizational schemes A and A' with respect to the re-organization A'' :
 \sum_{i''=1}^{n''} ( \sum_{i=1}^n G_{A_{i}} A_{i})( \sum_{i'=1}^{n'} G_{A_{i'}} A_{i'}) A_{i''} = \sum_{i''=1}^{n''}\sum_{i=1}^n \sum_{i'=1}^{n'} G_{A_{i}} A_{i} G_{A_{i'}} A_{i'} R(A_{i}, A_{i'}, A_{i''}) A_{i''} 
The activity merger possibilities (= combinatorial combinations) of organizational schemes  A  and  A'  with respect to the new activity  A_{i''}  of the re-organization  A'' :
 (\sum_{i=1}^n G_{A_{i}} A_{i})( \sum_{i'=1}^{n'} G_{A_{i'}} A_{i'}) =  \sum_{i=1}^n \sum_{i'=1}^{n'} G_{A_{i}} A_{i} G_{A_{i'}} A_{i'} 
The activity merger condition of  A_{i}  and  A_{i'}  with respect to  A_{i''}  :
 R(A_{i}, A_{i'}, A_{i''}) 
The activity merger coefficient  of  A_{i}  and  A_{i'}  with respect to  A_{i''}  :
 \sum_{i=1}^n \sum_{i'=1}^{n'} G_{A_{i}} A_{i} G_{A_{i'}} A_{i'} R(A_{i}, A_{i'}, A_{i''}) 
=======
Possible activity grouping polynomial (of a participator P_{k} ):
 \prod_{i=1}^n (1-A_{i})(A_{i} \in P_{k}) P_{k} 
Activity grouping coefficient (of a participator  P_{k} ):
 G_{P_{k}} = \prod_{i=1}^n \prod_{s \in {\prod_{}^i}n} A_{s}(A_{s} \in P_{k}) 
Activity grouping term (of a participator P_{k} ):
 G_{P_{k}} P_{k} 
Activity grouping polynomial (of the participators of \, P \, ):
 \sum_{k=1}^m G_{P_{k}} P_{k} 
=======
Cardinality formulas:
Total number of participators in the community \, C \, :
 |P| = \sum_{k=1}^n (-1)^{k-1} \sum_{s \in {\prod_{}^k}n}|\cap P_{A_{s}}| = m 
where
 \cap P_{A_{(1,2)}} = P_{A_1} \cap  P_{A_2} 
Total number of activities in the community \, C \, :
 |A| = \sum_{k=1}^m (-1)^{k-1} \sum_{s \in {\prod_{}^k}m}|\cap A_{P_{s}}| = n 
///////
