This page is a sub-page of our page on Clifford Algebra
///////
The sub-pages of this page are:
• Blades in Geometric Algebra
///////
Related KMR-pages:
///////
Other related sources of information:
///////
Formulas from Ambjörn’s presentation at SIGGRAPH 2000:
 \, \mathrm{V}^n \, , \, e_1 \, , e_2 \, , \dots , e_n \, 
 \, \mathrm{G} = \mathrm{G}_n = \mathrm{G}(\mathrm{V}^n) \, 
 \, M = \sum\limits_{k = 0}^{n} {\langle \, M \, \rangle}_k \, 
 \, {\langle \, M \, \rangle}_k  = B_1 + B_2 + \cdots \, 
 \, A_k = a_1 \wedge a_2 \wedge \cdots \wedge a_k \, 
 \, A_k \neq 0 \, \iff \, \{ a_1, a_2, \dots , a_k \} \, 
 \, P \in \mathrm{G}_n \, 
 
 \, P = p_1 \wedge p_2 \wedge \cdots \wedge p_n \, 
 
 \, I = e_1 \wedge e_2 \wedge \cdots \wedge e_n \, 
 \, [P] = PI^{-1} \, 
 
 \, \text{dual}(X) = XI^{-1} \, 
 \, \text{dual}(X) = X^* \, 
 \, B = b_1 \wedge b_2 \wedge \cdots \wedge b_m \, 
 \, \overline{B} \subseteq \mathrm{V}^n \, 
 \, \overline{B} = \text{Linspan}\{ b_1, b_2, \dots , b_m \} = \, 
 \, = \text{Linspan}\{ b \in \mathrm{G}_n : b \wedge B = 0 \} \, 
 \, \{ e_1, \dots , e_m \} \, 
 \, b_i = \sum\limits_{k = 0}^{m} b_{ik}e_k \; \text{for} \; i = 1, \, \dots \, , m \; , \, 
 \, B =( \det{b_{ik}}) \, e_1 \wedge e_2 \wedge \cdots \wedge e_m = \, 
 \, = (\det{b_{ik}}) \, e_1 e_2 \cdots e_m = \,    
///////