This page is a sub-page of our page on Geometric Numbers in the line and the plane.
///////
The interactive simulations on this page can be navigated with the Free Viewer
of the Graphing Calculator.
///////
The sub-pages of this page are:
///////
Related KMR pages:
• Clifford Algebra
• Geometric Algebra
• Quaternions
• The evolution of geometric arithmetic
///////
Other related sources of information:
• Imaginary Multiplication vs. Imaginary Exponents
• Map of Mathematics at the Quanta Magazine
•• Complex numbers as operators on the universe
///////
Representation: \, [ \, z \, ]_{R_{ectangular}} = \left< \, x + i y \, \right>_{R_{ectangular}} \, .
Representation: \, [ \, z \, ]_{P_{olar}} = \left< \, r e^{i \theta} \, \right>_{P_{olar}} \, .
///////
Basic arithmetic
Representations of addition:
\, [ \, z_1 + z_2 \, ]_{R_{ectangular}} \, = \, \left< \, (x_1 + i y_1) + (x_2 + i y_2) \, \right>_{R_{ectangular}} = \, \,\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \left< \, (x_1 + x_2) + i (y_1 + y_2) \, \right>_{R_{ectangular}} \,
\, [ \, z_1 + z_2 \, ]_{P_{olar}} \, = \, \left< \, r_1 \cos {\theta}_1 + r_2 \cos {\theta}_2 + i ( r_1 \sin {\theta}_1 + r_2 \sin {\theta}_2 ) \, \right>_{P_{olar}} \, = \,
\,\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \, \left< \, (r_1 (\cos {\theta}_1 + i \, \sin {\theta}_1) \, + \, r_2 (\cos {\theta}_2 + i \, \sin {\theta}_2) \, \right>_{P_{olar}} \, = \,
\,\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \, \left< \, r_1 e^{i {\theta}_1} \, + \, r_2 e^{i {\theta}_2} \, \right>_{P_{olar}} \,
/////// Film goes here
Interactive simulation of the addition of complex numbers.
Representations of multiplication:
\, [ \, z_1 \, z_2 \, ]_{R_{ectangular}} \, = \, \left< \, (x_1 + i y_1) \,(x_2 + i y_2) \,\right>_{R_{ectangular}} \, = \,
\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \, = \left< \, (x_1 x_2 - y_1 y_2) + i (x_1 y_2 + x_2 y_1) \, \right>_{R_{ectangular}} \,
\, [ \, z_1 \, z_2 \, ]_{P_{olar}} = \, \left< \, r_1 e^{i {\theta}_1} \, r_2 e^{i {\theta}_2} \, \right>_{P_{olar}} \, = \,
\, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \, \left< \, r_1 r_2 e^{i({\theta}_1 + \, {\theta}_2)} \, \right>_{P_{olar}} \,
Animation of complex multiplication with filled triangles:
Interactive simulation of the multiplication of complex numbers.
More interactive simulations on basic arithmetic with complex numbers.
///////////////////////////////////////////
Applications of Complex Numbers
Electrical impedance:
Interactive simulation of electrical impedance.
///////
Planar electro-magnetic wave:
Interactive simulation of a planar electro-magnetic wave.
///////
Imaginary numbers are real (13 videos by Welch Labs):
///////
Euler’s formula with introductory group theory (3Blue1Brown on YouTube):
///////
Imaginary Numbers, Functions of Complex Variables: 3D animations
(Eugene Khutoryansky on YouTube):
///////