Collaborative Construction of Artifacts

Hannes Ebner Matthias Palmér Ambjorn Naeve
hebner@csc.kth.se matthias@csc.kth.se amb@csc.kth.se

January 25, 2007

School of Computer Science and Communication
Royal Institute of Technology (KTH), Sweden

Abstract

This paper describes an approach for collaborative construction of
artifacts, such as e.g. graphical maps and annotatable text documents,
without requiring write-access to a common single file. Qur approach
is applicable to any kind of artifacts that can be divided into separate
contributions, where each one is authored and stored independently,
and, on request, merged into the artifact. The goal is to move col-
laboration issues from the files where artifacts are expressed, to an in-
formation directory. This information directory manages information
around artifacts and keeps track of existing contributions to artifacts.
Our prototype of such an information directory, named Collaborilla,
is designed to be a flexible service, which can be updated by anyone
in a wiki-style manner. With this approach, viewing a collaboratively
constructed artifact gives each viewer the control of including or ex-
cluding various contributions. Moreover, each viewer can easily choose
to participate and provide a new contribution to the artifact without
the other authors being aware of this. If information about this new
contribution is published in the Collaborilla directory, the contribution
will also be seen by others.

1 Introduction

Even though technology in many aspects has improved information man-
agement, collaboration is still rarely supported in practice. Even when
there is technical support for collaboration, from a human perspective it
is often either synchronous or turn-based. To work satisfactorily, these
approaches to collaboration require careful control of concurrency [3] or
a manual/supervised merging process. We will focus on situations where
collaboration is mostly asynchronous and the risk of producing inconsisten-
cies is small. In such situations, we argue that an important hinderance
for technical support is a too tight connection between the artifact that is

being developed in collaboration and the expression of it in a container. For
example, when writing an article, the article is the artifact, the file where
the article is located is the container, and the expression is Microsoft Office
XML, Open Document Format, LaTeX, or whatever format is being used.
Breaking this connection will allow multiple contributions to an artifact
without requiring write access to the same container. The central questions
are, how do you:

e Discover which artifacts and contributions exist?
e Decide which contributions to include when viewing an artifact?

e Publish artifacts and contributions to artifacts?

Part of the answer is to assign globally unique identifiers to artifacts
[1], allowing them to be addressed independently of their expression in con-
tainers. This makes it possible to introduce an information directory where
artifacts can be described. The focus of this paper is on the specific re-
quirements of an information directory that keeps track of asynchronous
constributions and to describe an implementation called Collaborilla [2].
Collaborilla has been developed for the purpose of supporting collaboration
around a specific type of artifacts called Context-maps [10, 8]. However,
we believe that the design of Collaborilla is generic enough to be useful for
many other artifact types, provided that their expressions and the resulting
artifacts fulfill the basic requirements for collaboration.

2 Existing Technologies and Related Work

Much of the work done within the field of CSCW focuses on the coordi-
nation of the communication process around collaboration. For example,
in [9] an evaluation framework is introduced where the main variables are
work-coupling, communication, and coordination. Communication and co-
ordination refer to the human activities needed to perform the work. The
work can be tightly or loosely coupled, which affects the context of the col-
laboration. Furthermore, in more technical discussions, such as in [3], the
focus is on how to develop applications with concurrency-support via notifi-
cation mechanisms, layers, modules etc., preferably supporting the principle
of What You See Is What I See (WYSIWIS). In this paper we argue that, for
asynchronous collaboration with small risk of inconsistencies, collaboration
is better seen as centered around the artifact than around the application,
community, or stated goal. A similar argument was made in [7] where meta-
data around documents is at the center of the collaboration process.

In this section we take a quick look on artifact-centered collaboration-
related technologies - in contrast to previous work within CSCW.

2.1 Collaboration Technologies

Differential files [5] are a commonly used tool when developing software.
Such files are used to update an already existing document to a newer ver-
sion. A patch is a computer-readable summary of changes (delta) between
two files or whole file sets. In theory, a patch can be used with any kind of
document. However, the order of how the patches are applied to the origi-
nal document is important. Furthermore, a patch is intended to be merged
sooner or later, the longer you keep it separate the more likely it is that
there will be problems merging it. In practice, you do not make a patch
unless you foresee a merge which requires coordinated collaboration, such
as in a revision control system (see below). With contributions to artifacts,
such coordinated collaboration is not required. Instead, the merging is done
every time an end user requests a view on an artifact. In short, artifacts
have no ”official” view, while differential files always have an official view,
though it changes with time.

Revision control is popular among software developers, both to keep
track of changes in source code and documentation, and in situations where
software is developed in a distributed and collaborative way. It is common
to use revision control in connection with ”diffing” and patching tools. Ad-
vanced features like branching and merging make revision control superior
to just storing snapshots of a project. However, like differential files, revision
control is not restricted to any kind of document or project. Popular revi-
sion control implementations are the Concurrent Versioning System (CVS)
and its successor Subversion.

Annotea [6] is an extensible technology developed by the W3C that pro-
vides a mechanism for adding comments inside existing web documents such
as HTML and XML. The approach makes use of xpointers for pointing into
existing web pages and a tailored repository for storing the annotations.
Annotations are typically small chunks of text that are identified and de-
scribed with metadata expressed in RDF. Annotea requires specific support
in the web browser for supporting editing, publishing and fetching relevant
annotations from a given repository and include them in the right place.
Of the mentioned technologies, Annotea is the one that is closest to Colla-
borilla. The major distinction is that Annotea focuses on the annotations
rather than on the documents where the annotations apply. With its focus
on artifacts, Collaborilla can be seen as complementary to Annotea.

Context-maps [10] are visual representations of concepts and concept re-
lations. The major characteristics of Context-maps are that concepts and
concept-relations can be shared between maps, content can be tied to con-
cepts and concept-relations, metadata can be attached to nearly everything,

and everything is expressed in RDF. That context-maps are expressed in
RDF has consequences such as allowing formalized knowledge modeling in
ontologies as well as interoperability with metadata standards in general. It
also makes it possible to merge independent contributions by simply joining
their corresponding RDF graphs. Furthermore, a context-map is not bound
to a specific modeling style. Instead it can be configured to present maps in
a manner which resembles concept-maps, UML, argumentative maps etc.

2.2 Information Directory Technologies

There are a number of technologies that do not explicitly support collab-
oration, but still deserve to be mentioned, since their capabilities may be
part of the design that we are attempting. Database Management System
is a commonly used technology to hold a large amount of data. A single
database usually consists of several tables, which are associated with each
other using key fields. Depending on the structure of the database and its
data, queries can be complex and thus make the desired design complicated.
Versioning of data is not natively supported.

Lightweight Directory Access Protocol [11] (LDAP) is widely used
as a backend for information directories. It consists of a tree built out of
directory entries, where each entry can hold one or more attributes that
contain the information. The design of LDAP allows the creation of entries
as children of already existing nodes, making it possible to map an already
existing information structure without structural modifications. Versioning
of entries is not natively supported.

Domain Name System (DNS) and its extension Resource Records
[4] offer a variety of additional fields, which allow more than a simple
Hostname-to-IP translation. However, the identifiers in DNS are hostnames,
and DNS is not designed to work with more complex identifiers like e.g., full
paths.

3 Collaborilla Architecture

Viewing an artifact as a union of separate contributions forces a range of
decisions. For Collaborilla these decisions have been made largely based on
the needs of context-maps. First, contributions have no separate identity
but are assumed to be uniquely identified by the container they are expressed
in and the artifact’s identifier. Second, there are no dependencies between
contributions, only between artifacts and containers where contributions are
expressed. Third, the artifact’s contributions - indicated via containers - are
ordered. Fourth, metadata is availabe on artifacts and containers.

Identifier:

/org/conzilla/demo/OA

Required container:

/org/conzilla/amb/Demo

Optional container:

/org/conzilla/matt/Com
Metadata:

Title: Organic Agriculture
Description: An overview of ideas in OA.
Author: Ambjérn Naeve

Identifier: |/org/conzilla/amb/Demo ||| Identifier: | /org/conzilla/matt/Com
Identifier | http://kth.se/amb/Demo Identifier | http://kth.se/matt/Com
resolved: Metadata: resolved: Metadata:

Title: Ambjoérns Demo Context
Description: A container where
modeling is for demoing
Author: Ambjérn Naeve

Title: Matthias commenting Context
Description: A container containing
comments on existing things
Author: Matthias Palmér

Figure 1: Information and dependencies managed by Collaborilla

Collaborilla is designed as a centrally-managed information directory
containing:

e Artifact information: an artifact’s persistent unique identifier, descrip-
tive metadata, and dependencies to containers from where contribu-
tions can be loaded.

e Container information: a container’s persistent unique identifier, de-
scriptive metadata, and a resolving to an locatable address for the
container, i.e. a URL.

The container files that provide the actual contributions to a published
artifact need to be available at a publicly accessible place. Collaborilla does
not, in itself, store the physical files. See figure 1 for an overview of the most
important characteristics of Collaborilla.

In the following will we take a closer look at metadata, dependencies,
and supporting services of Collaborilla. We will also look at how versioning
is done and the technologies used when implementing Collaborilla.

3.1 Metadata

When searching or browsing for artifacts, or contributions to artifacts, it is
useful to get access to descriptive information in advance, i.e. metadata.
This allows viewers to make informed decisions on which artifacts to view

and which contributions to artifacts that should be included. Since the con-
tributions have no separate identity, the contributions cannot have metadata
directly. As a compensation, Collaborilla provides metadata on the level of
containers where the contributions are expressed. Since every container may
contain many contributions (for different artifacts) the metadata describes
the contribution context rather than individual contributions. This is an
intentional design to minimize both the burdens of editing metadata and
the administrative hurdles if the need to update metadata arises. The ex-
act nature of the metadata is not decided but is foreseen to include a short
description, who the author(s) is, a purpose, date of modification etc.

3.2 Building a Dependency Tree

In order to be able to work with artifacts and related contributions, a cen-
trally managed information directory has to take care of dependencies be-
tween the artifacts and its contributions. Since contributions have no sepa-
rate identity, the dependencies will be expressed between artifacts and con-
tainers. The dependencies of an artifact are composed of two different kinds:
required and optional containers. If a container is referred to as required,
the referring artifact should not be loaded without it, since it contains es-
sential information. For optional containers it is in the sphere of control of
the user to decide wether to include them or not.

3.3 Services

Collaborilla consists of two services: a resolving and a referring service. Re-
solving a persistent identifier into a location from where a container can be
loaded requires information about the location of the requested component.
Storing and managing this is the task of the resolving service. The depen-
dency tree and the metadata with information about artifacts and containers
are handled by the referring service. Both services rely on the same infor-
mation directory. It would be possible to use them separately, but in reality
the resolving service will always be utilized in connection with the referring
service. As both services are part of the collaboration process, both services
are implemented within the same application. Currently, you connect to
the services through a simple text based protocol inpired by HT'TP. A more
standardized alternative, such as a Web Service, will be developed in the
near future.

3.4 Versioning of Artifacts

In Collaborilla, the most recent collaboration information is always held
along with previous revisions. This is done to avoid breaking eventually
existing dependencies. The information is archived as a revision before it is
actually modified. The information about such revisions cannot be modified

in order to keep an authentic history of artifacts and its contributions. Col-
laborilla may be configured to require authorization, although an open and
unrestrictive wiki-style approach to modifications are envisioned and explic-
itly supported in the design. Furthermore, the metadata is always coupled
to a specific revision of a container, so it is advisable to keep revisions of
every container. The reason is simple: somebody may have linked to - or
reused - something that might not exist anymore in the most recent revision
of a container.

3.5 Technology to be built upon

The collaboration technologies discussed in subsection 2.1 do not contribute
directly to our approach of collaboration. Conventional patching is too
linear, and Annotea follows a different approach. Only revision control can
be used to complement our backend. The same applies to the available
information directories. No perfect match for our requirements exists, but
we can still build upon one of the backends. LDAP [11] is a good choice, since
it supports tree structures and the data structures can be easily modified if
necessary. Aside from that, the design of Collaborilla gives us the flexibility
to switch the backend at a later point of development without architectural
modifications. Hence, the decision to use LDAP can easily be changed at a
later point.

4 Conclusions and Future Work

We have found a solution to three of the fundamental problems posed as
questions in the introduction, i.e. how to discover, decide and publish
artifacts. The solution allows contributions to be expressed without any
requirements on either common storage or specific coordinated collabora-
tion processes of the authors involved. The implementation, Collaborilla,
is an information directory where needed dependencies and metadata are
kept. Moreover, the dependencies and metadata are updated in a wiki-style
manner. Hence, there is no requirements for authentication. Possibly er-
ronous or intentionally bad information will be approached in a wiki-style,
where e.g., a community takes responsibility and does rollbacks or creates
new revisions. There is currently two fundamental limitations to Collabo-
rilla that would hinder it from being useful for other artifact-types than
Context-maps. First, it does not handle contributions as separate entities,
only the containers where the contributions are expressed are dealt with
in Collaborilla. This does not allow contribution-specific metadata. Sec-
ond, Collaborilla does not allow dependencies between collaborations. This
would be neccessary for other artifact-types when contributions cannot be
merged without requiring 'previous’ contributions to be loaded already.

Acknowledgements

This work has been carried out with financial support from the EU-FP6
projects Prolearn and LUISA, which the authors gratefully acknowledge.

References

1]

[10]

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identi-
fiers: Generic syntax. Request for Comments 3986, Internet Engineer-
ing Task Force, 2005.

H. Ebner. Collaborilla - an enhancement to the conzilla concept browser
for enabling collaboration. Master’s thesis, Department of Computer
and Systems Sciences, Royal Institute of Technology, Stockholm, Swe-
den, 2006. http://collaborilla.sf.net.

S. Greenberg and D. Marwood. Real-time groupware as a distributed
system: Concurrency control and its effect on the interface. Proceed-
ings of the ACM Conference on Computer-Supported Cooperative Work
CSCW’94, pages 207218, 1994.

A. Gulbrandsen, P. Vixie, and L. Esibov. A dns rr for specifying the
location of services (dns srv). Request for Comments 2782, Internet
Engineering Task Force, 2000.

P. Heckel. A technique for isolating differences between files. Commun.
ACM, 21(4), 1978.

M. Koivunen. Annotea and semantic web supported collaboration.
ESWC, UserSWeb workshop, 2005.

A. LaMarca, W. K. Edwards, P. Dourish, J. Lamping, I. Smith, and
T. Thornton. Taking the work out of workflow: mechanisms for
document-centered collaboration. Proceedings of the Sixth FEuropean
conference on Computer supported cooperative work, pages 1-20, 1999.

A. Naeve. The concept browser - a new form of knowledge management
tool. Proceedings of the 2nd European Web-based Learning Environ-
ments Conference (WBLE 2001), October 2001.

D. Neale, M. Carrol, and M. Rosson. Evaluating computer-supported
cooperative work: models and frameworks. Proceedings of the 2004
ACM conference on Computer supported cooperative work, 2004.

M. Palmér and A. Naeve. Conzilla - a conceptual interface to the
semantic web. Invited paper at the 13th International Conference on
Conceptual Structures, 2005.

http://collaborilla.sf.net

[11] M. Wahl, T. Howes, and S. Kille. Lightweight directory access protocol
(v3). Request for Comments 2251, Internet Engineering Task Force,
December 1997.

	Introduction
	Existing Technologies and Related Work
	Collaboration Technologies
	Information Directory Technologies

	Collaborilla Architecture
	Metadata
	Building a Dependency Tree
	Services
	Versioning of Artifacts
	Technology to be built upon

	Conclusions and Future Work

