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Learning Objectives
This chapter will help you understand:

- the notion of metadata interoperability,

- the fundamental principles behind the metadata formats used for describing learning
objects,

« how and when metadata standards can, and cannot, be used in combination,

- the role of abstract models for metadata in enabling metadata interoperability,
 how application profiles can be used to customize metadata standards,

- the importance of metadata semantics, and

- future directions of learning object metadata standards.

Executive Summary

A central task when managing learning objects is the administration of metadata. Metadata may
consist of many kinds of information about the learning object, from descriptions and subject
classifications to relations to other learning objects and accessibility characteristics.



There are currently a number of metadata standards in use within the e-learning community.
IEEE Learning Object Metadata (LOM) is usually regarded as the most central standard in this
field, but in recent years it has become apparent that standards from other communities, such as
digital libraries, online multimedia and e-Government also play an important role for e-learning
systems. The reason is simple: many potential learning objects have their origin in other kinds of
repositories of digital content, and their metadata, while described in a way that fits the original
community, is of great value in an e-learning context too.

This chapter explains a number of major difficulties encountered when trying to use such
metadata in combination and explores a number of developments that will lead to solutions to the
problems. Three major difficulties will be analyzed:

- the markedly differing metadata formats and abstract models,
- the apparent utopia of application profiles, and
- the elusive notion of metadata semantics.

At a first glance, the major problem of metadata interoperability seems to be about formats: the
different standards all use different methods of encoding their information. Nowadays, many
standards use XML-based encodings, but using XML is not a guarantee for interoperability. The
chapter will explain the complex issues arising from the use of different syntaxes, such as XML,
RDF and HTML meta tags.

Even if the syntax issue would be solved, many issues remain. Some standards, such as Dublin
Core, rely on an abstract framework that fits into many syntaxes. We will explain the point of
abstract models for metadata and how they support metadata interoperability.

Underlying formats and abstract frameworks is the subtle notion of semantics. With the rise of
the Semantic Web initiative of the W3C, the semantics of metadata descriptions has received
increasing attention. Semantics turns out to be a central aspect of metadata interoperability. We
try to explain why this is so, and draw out the implications for learning object metadata
standards.

Setting formats and semantic issues aside, we will explore what it means to combine metadata
from different standards. Many metadata standards are actually based on one of the core
standards, through the use of so-called application profiles. However, looking more closely at
this notion, it turns out that it is highly problematic and not very well supported by the current set
of metadata standards.

It turns out that all these issues are deeply connected, and that the future development of learning
object metadata promises to dramatically improve syntactic and semantic interoperability as well
as modularity of metadata systems. The chapter will discuss how some of this is already possible
today, and how tomorrow's learning object metadata standards will fit into this framework.

Introduction

The administration and exchange of metadata is a central activity in systems that manage
learning objects. Metadata considerations are fundamental when creating interoperable e-learning
tools, and metadata standards have been among the very first learning technology standards to
mature. But despite enormous progress in the harmonization of learning object metadata
standards, culminating with the release of the IEEE Learning Object Metadata standard in 2002,
there remains a core of unsolved issues with respect to metadata interoperability.



Obscured by difficulties in precisely defining the metadata concept, and behind an abundance of
conflicting recommendations and opaque metadata formats, these issues are not apparent to the
casual observer. This chapter will bring some of these interoperability issues to the surface, and
in the process give some insight into how they might be addressed in future learning object
metadata standards.

Metadata for Learning Objects

Metadata is usually defined as “data about data”, i.e., any kind of information that in some way
references or describes aspects of some other piece of information. Metadata is introduced in
information management systems in order to support certain administrative operations, including
searching, displaying summaries or configuring interfaces. In essence, metadata creates a level of
indirection, allowing systems to manage resources without ever having to delve into their
physical or digital internals.

In an e-learning context, metadata may consist of many kinds of information about a learning
object, from descriptions and subject classifications to accessibility characteristics and relations
between learning objects. For example, learning object metadata may be used by cataloguing
software for indexing, by learning management systems for matching learners with relevant
resources, and by content players that configure the learning object to the user's environment and
needs.

Background

Metadata in a broad sense is barely something new. Library catalogues are metadata, and allow
librarians to manage a large library without unnecessarily having to deal with the physical books
themselves. The same holds for maps that allow you to manage land, gravestones that give you
information about deceased persons, and so on. Indeed, the two latter examples highlight that the
term "metadata" is used to include descriptions that provide information about things that are not
necessarily information artefacts.

Today, the term “metadata” usually refers to information with one fundamentally different
characteristic as compared to the above examples: it is machine-processable, i.e. it is expressed
in a way that allows computers to search, sort and present metadata without human intervention.
Metadata in this modern sense has been part of computer systems since their early days, for
example in file systems where file names and file permissions are metadata about the files.

With the rise of computer networks, metadata gained a new kind of importance. Geographically
separated systems with different implementations, but managing the same kinds of data needed
to communicate, and metadata standards focused on interoperability between systems were
developed. Early examples of metadata standards include standards for library information
exchange (the MARC format) and standards for geo-spatial data, used for map making. Another
metadata standard of enormous importance is IETF RFC 822 from 1982 that specifies the format
of e-mail headers, enabling email systems to transfer messages from the sender's computer to that
of the addressee.

The growing use of Internet technology, and in particular, the World Wide Web became a strong
driving force for the development of more generally applicable metadata standards. With the
WWW a whole new usage pattern of metadata surfaced. Not only were the resources described
of a much more diverse nature, but the applications using the metadata were also of many
different kinds. The users of metadata were not only large computer systems but also individuals
in front of their desktop computers.



This diversity of systems and resources leads to many new demands on metadata standards in
general, and provides the fundamental functional requirements on learning object metadata
standards in particular. We will argue that current learning object metadata standards are not
fully up to the task of managing this diversity, and we will then describe how this problem needs
to be tackled.

Defining Metadata

It can be argued that the above definition of metadata as “data about data” may be too narrow
because it does not allow information about non-digital things, such as persons, places or books
to be called metadata. On the other hand, it may be too broad because it allows any kind of
description, such as an image of a learning object, to be considered metadata.

In practice, most modern metadata standards adopt a definition of metadata that allows
descriptions about digital or non-digital things alike, usually collectively termed resources, but
limits the type of descriptions to a very restricted kind of data, as defined by the metadata
standard.

In this chapter, we will use the term “metadata” in the sense of the following modern definition:
Machine-processable information about resources

This definition encompasses not only human-assigned information about a resource (such as
name/title, subject and creator), but may also be used for information relating to e.g.

- the life cycle of a piece of information (different versions, history, etc.)
- technical aspects of the resource (size, format, functionality, etc.)

- relations between resources and aggregations of resources (lessons comprised of learning
objects etc.)

It encompasses information not only about digital resources, but also about e.g.
- learners and teachers (history, competencies, etc.)
- events (location, participants etc.)
- abstract notions (pedagogical designs, terms in taxonomies etc.)

We will later return in more detail to the notion of machine-processability, which is central for
understanding the future developments in learning object metadata standards.

The Notion of Interoperability

What, then, do we mean with the all-important term interoperability in a metadata context?
Learning object metadata interoperability refers to the ability of different systems to exchange
information about resources. Metadata created by a human user in one system and then
transferred to a second system will be processed by that second system in ways which are
consistent with the intentions of the user who created the metadata.

However, for metadata standards, the goals for interoperability have been set much higher than
this basic level. Duval, Hodgins, Sutton, and Weibel (2002) set forth four fundamental principles
for interoperability between metadata standards. Three of these are repeated in the Dublin Core —
I[EEE LTSC Memorandum of Understanding (“Memorandum”, 2000). These are:

- Extensibility, or the ability to create structural additions to a metadata standard for



application-specific or community-specific needs. Given the diversity of resources and
information, extensibility is a critical feature of metadata standards and formats.

« Modularity, or the ability to combine metadata fragments adhering to different standards.
Modularity is stronger than simple extensibility in that it requires that metadata from
different standards, including metadata extensions from different sources, are usable in
combination without causing ambiguities or incompatibilities.

- Refinements, or the ability to create semantic extensions, i.e., more fine-grained
descriptions that are compatible with more coarse-grained metadata, and to translate a fine-
grained description into a more coarse-grained description.

While important, the fourth principle mentioned in Duval et al (2002), multilingualism, is not the
kind of technical problem we will discuss in this chapter. However, based on the above
discussion, we will add another principle to this set:

- Machine-processability, or the ability to automate processing of metadata. Particularly
important is automatic processing of extensions, modules and refinements.

The wider notion of interoperability presented here is unfortunately not fully realized in current
learning object metadata standards. This chapter is devoted to explaining why this is so, and to
describing how the above principles may be realized in future standards. The principles of
extensibility, modularity and refinements will be central in this analysis, and machine-
processability will form an overarching theme.

Metadata Standards in the LO Domain

There are currently a number of metadata standards in use within the e-learning domain. IEEE
Learning Object Metadata (LOM), published in 2002, is usually regarded as the dominant
standard in this field, but in recent years it has become apparent that standards from other
communities, such as digital libraries, digital multimedia and e-Government also play an
important role. The reason is simple: many potential learning objects have their origin in other
kinds of communities, and are described in a way that fits that specific community. The division
of resources into categories such as “learning objects”, “library material” etc. is fading in favour
of a broader notion of multi-purpose content.

Apart from the IEEE LOM standard, some of the most important metadata standards that are
relevant for learning objects are:

+ The Dublin Core metadata standard, popular on the World Wide Web and in the digital
library community;

« MPEG-7, a complex metadata standard for digital video;
« MODS, an XML encoding of parts of the de facto library metadata standard MARC;

A number of specifications from the IMS Global Learning Consortium, such as IMS
Content Packaging, IMS Question and Test Interoperability and IMS Learner Information
Package that have metadata parts.

Additionally, a number of metadata standards and specifications that are based on one of the
above are also available. Based on Dublin Core are for example EdNA, a metadata standard for
the Australian Education Network, and GEM, a US government-sponsored Gateway to
Educational Materials. Based on LOM we find among many others the RDN/LTSN LOM
application profile (RLLOMAP) and the Curriculum Online Metadata Schema. The IMS



metadata standard and SCORM also reuse LOM as a basis on top of which they build their own
frameworks.

These various standards and specifications have been developed to meet different requirements,
and to support the needs of different communities. In some cases standards reflect the broadly
shared requirements of a large community; in others, they reflect more specific requirements of a
smaller or more specialised community, perhaps defined by activity/interest or by geopolitical
boundaries.

The development of these specifications has highlighted the necessity of being able to use
component parts of different standards in combination. Because these standards are not designed
to be compatible, this is unfortunately not possible today. We will later see precisely why, and
describe a path to a long-term solution.

Dublin Core

The Dublin Core Metadata Initiative was started in 1995 as a reaction to the problems of finding
resources on the growing World Wide Web. It is used worldwide by a broad range of systems
and organizations on the WWW and in various closed infrastructures.

Initially, Dublin Core consisted of 15 terms which were designed to express simple textual
information about resources. The project has since grown to accommodate around 80 terms,
some of which are of general nature (such as “title” and “subject”), while others are community-
specific (such as “educationalLevel” or “bibliographicCitation”).

The terms in Dublin Core come in three kinds: properties (also called “elements”), syntax
encoding schemes and vocabulary encoding schemes. Properties are used to describe a specific
aspect of a resource, while the two kinds of encoding schemes are used to specify details of the
value of a property. Properties are defined independently of each other, and Dublin Core allows
metadata containing any number and combinations of properties to be used to describe a
resource.

The term “Simple DC” is sometimes used to describe a usage pattern of Dublin Core metadata
that limits itself to the original 15 terms in the Dublin Core Element Set, used in a pattern where
each is optional and repeatable.

IEEE LOM

The IEEE LOM standard has its origins in earlier work within the European ARIADNE project
and the IMS Global Learning Consortium, beginning in 1995. In 2002, IEEE finally approved
LOM as an international standard, and LOM has since enjoyed an ever-increasing support from
other specification bodies and application developers within the e-learning field.

LOM consists of a single hierarchy of 76 elements divided into nine categories, and specifies
vocabularies and allowed syntaxes for the value of each element. It can be used to convey not
only metadata useful for resource discovery, but also information such as aspects of the lifecycle
of a learning object and pedagogical features.

While the terms in Dublin Core are defined and used independently of each other, the LOM
standard specifies the structure of the whole of its hierarchy of metadats in a single standard. The
standard specifies where in this hierarchy each element may appear, whether it may be repeated,
whether ordering matters, and so on. The meaning of a LOM element depends on the precise
structural context in which it appears.



In effect, LOM specifies both the elements themselves and a set of rules for using the elements in
combination, a basic example of a so-called “application profile”. One advantage of this
approach is that it allows for much stricter validation of LOM data as compared to Dublin Core,
something that makes LOM immediately usable without further customization.

MPEG-7, MODS and the IMS Standards

MPEG-7 is the name of a digital video standard with a heavy focus on the use of metadata to
describe the content of a video stream. What makes MPEG-7 interesting is the fact that it has the
potential to be deeply integrated into the video production process, something that generally can
be expected to result in very high metadata quality. MPEG-7 also represents a challenge in that
the resources it describes can be extremely intangible, such as an appearance of a certain person
in a movie. By contrast, other metadata standards such as LOM and Dublin Core have been
developed in a library tradition, using a document metaphor.

This metadata standard does not contain any information specific to learning, but several parts of
the information embedded in MPEG-7 metadata might still be useful for an e-learning
application.

MODS has been developed by the Library of Congress to serve as a modern version of the
widely used MARC format for library cataloguing data. It is not oriented towards educational
applications, but is nevertheless interesting because of the large amounts of high quality library
metadata available in this format.

The IMS Global Learning Consortium has created a diverse set of standards for use in e-learning
systems. Although only one of them, the LOM-based IMS Metadata specification, calls itself a
metadata standard, there are a number of standards within IMS that, as a whole or in part, fit our
definition of a metadata standard. The part of IMS Content Packaging that specifies how to
describe the structure of a package of learning objects would classify as a metadata standard, as
would the description of a learner in IMS Learner Information Package, etc.

The structure of MPEG-7 metadata, MODS and the IMS standards are in many ways similar to
LOM in that they are complex, monolithic hierarchies of data elements with strict structural
constraints, even though the details of how the hierarchies are constructed differ substantially.
For example, MPEG-7 defines a complex so-called Data Description Language (DDL) that is
used to customize the metadata format to a certain application. This language is based on a
completely different set of principles than the MODS specification or the IMS set of
specifications.

From a metadata interoperability perspective we would expect to be able to combine information
from all these different standards in descriptions of the persons, artefacts, events, etc. that make
up an e-learning system. In practice, this is currently difficult or impossible to do. Instead, each
standard lives in isolation, largely incompatible with the others. The reason for this is not tied to
any single standard, but originates in the lack of a common platform for metadata standards in
general.

The rest of this chapter will focus exclusively on the relationship between Dublin Core and
LOM, as this will highlight the most important difficulties with trying to combine two
approaches to defining metadata. However, the lessons learned will be applicable to a much
broader range of standards, including the standards mentioned above.



Extensibility in Metadata Formats

At a first glance, the major problems of metadata interoperability seem to relate to formats: LOM
and Dublin Core use different methods of encoding their information.

We will find, however, that the formats currently used by LOM and Dublin Core actually do
allow for extending the format and combining terms from two standards. The problem instead
lies on another level, in the interpretation or semantics of the metadata expressions. In particular,
metadata applications will have trouble understanding LOM terms in a DC context, and vice
versa.

In order to understand these difficulties, we must first explore how the two standards approach
the issue of metadata formats.

Bindings

Both LOM and Dublin Core use a two-layered approach to defining metadata models. In the core
standards, an abstract information structure is defined, defining the terms that may be used and
their relationships. This information structure can then be encoded in one of several alternative
formats, called bindings. As an example, Dublin Core currently supports three bindings:

+ “meta” tags in HTML/XHTML

- XML, the Extensible Markup Language, a general-purpose text-markup and data exchange
language

- RDF, the Resource Description Framework, a general-purpose metadata framework

The situation with LOM is similar. At the time of writing, an XML binding for LOM has just
been approved by the IEEE, while an RDF binding is in development.

Bindings to other formats are sometimes necessary, of which some see wide-spread use and
others are only used for internal purposes. Many applications use such “private bindings” for,
e.g., implementing their metadata in a relational database, or embedding metadata in a private
protocol. One such example is the News Metadata Framework (The International Press
Telecommunications Council, 2005).

We note that all three formats listed above are specified by the W3C, which should not be
surprising as the interoperability problems we are studying arise in a WWW context. Because of
the limited generality of “meta” tags and the fact that they will be replaced by an RDF-
compatible metadata module in XHTML?2, we will not discuss them further here. Instead, we will
concentrate on the two major current metadata formats: XML and RDF.

XML-based Formats

An XML document can be represented as a tree structure of XML elements. Each element may
contain text as well as other XML elements, and may also have attributes. While XML has its
origins in standards for creating structured text documents, it is widely used to encode data of
many kinds.

XML itself does not provide a fixed set of element names and attribute names. Rather, users of
XML define their own XML language, or in other words: a set of element names and attribute
names for use in XML documents and a set of rules for how those named elements and attributes
are to be interpreted. For this reason, the XML standard itself is sometimes referred to as a meta-
language, 1.e., a set of rules for defining XML languages.



Each of the metadata standards mentioned above define their own such XML language. One such
language is the LOM XML binding defined by the IEEE, exemplified in Example 1.

<?xml version="1.0"2>
<lom xmlns="http://ltsc.ieee.org/xsd/LOM" >
<general>
<identifier>
<catalog>URI</catalog>
<entry>http://www.example.com/objects/Paralll</entry>
</identifier>
<language>fr</language>
<description>
<string language="en">
This learning object explains parachuting.
</string>
</description>
<structure>
<source>LOMV1.0</source>
<value>atomic</value>
</structure>
</general>

<educational>
<description>
<string language="en">
Useful for learning some flight-related French terminology.
</string>
</description>
<language>en</language>
</educational>
</lom>

Example 1. A LOM XML metadata instance

This XML file is a metadata description (albeit somewhat unrealistic) of a learning object about
parachuting. The LOM XML binding tells us in detail how to interpret each XML element. For
example, we can see that although the atomic learning object is in French (“fr”), it is intended for
English-speaking learners (“en”), and the real purpose is to learn flight-related French
terminology.

The LOM XML binding thus specifies the precise semantics of each XML element, in the
context it appears. As we can see from the example above, the XML element “language”, when
taken on its own, is ambiguous; it must be interpreted differently when it appears as a sub-
element (or child) of the “general” and “educational” elements, respectively. It is therefore
necessary for the LOM XML binding to specify the semantics of the complete XML document as
a whole, taking all parent/child relations into account.

Another XML language is specified in the Dublin Core XML encoding guidelines. Example 2
shows a resource described using Dublin Core and encoded in that language:

<?xml version="1.0"7?>

<metadata resource="http://www.example.com/objects/Paralll”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/">

<dc:subject xsi:type="dcterms:LCSH">t1750</dc:subject>




<dc:description>
This learning object explains parachuting.

</dc:description>

<dcterms:isPartOf xsi:type="dcterms:URI">
http://www.example.com/courses/French344

</dcterms:isPartOf>

<dcterms:modified xsi:type="dcterms:W3CDTF">
2001-07-18

</dcterms:modified>

<dc:format xsi:type="dcterms:IMT">
text/html

</dc:format>

</metadata>

Example 2. A Dublin Core XML metadata instance. Note that Dublin Core does not currently mandate a particular
container element in XML description, so we have used an arbitrary “metadata” container element.

From this description and the semantics defined by Dublin Core, we can understand that the
resource described is about parachuting (code t1750 in Library of Congress Subject Headings),
and that is part of the course identified by “http://www.example.com/courses/French344”, that it
is in HTML format, etc.

Other XML languages for Dublin Core and for LOM are perfectly possible. These will have their
own rules for interpreting the XML data, and will operate independently of the official bindings.
Note that such alternative languages may reuse XML element names from the official bindings,
but use them together with a different set of rules.

RDF

RDF was designed as an extensible framework for metadata descriptions. It was created within
the Semantic Web initiative at the World Wide Web Consortium (W3C), which aims to create a
global network of machine-processable data as an extension to the WWW.

Unlike XML, RDF is not a meta-language, i.e., you do not need to create your own RDF-based
language. Instead, RDF allows descriptions using parts from different metadata standards and
terms from independent vocabularies to coexist within the same metadata language. It is thus fair
to say that RDF has been designed to fulfil the role of a general-purpose metadata language.



rdf:type

rdf:value

dc:subject

dc:description

This learning object explains parachuting. | I I

dcterms:isPartOf - http://www.example.com/
o courses/French344

dcterms:modified

http://www.example.com/
objects/Para101

2001-07-18 | | dcterms:wacorF |

rdf:type
dc:format

rdf:value

text/html II

Figure 1. An example of a Dublin Core description expressed in RDF.

RDF metadata is made up of sets of statements. Each statement describes a single attribute, or
property, of a single resource. By combining several statements about the same resource, a
metadata description of that resource can be constructed. RDF data can be represented as a
nodes-and-arcs diagram, where the nodes represent resources, and arcs represent properties. The
Dublin Core example given in the previous section can be expressed in RDF as in Figure 1.

rdf:type

dcterms:RFC1766

dc:language rdf:value

dc:description

rdf:value - - - - -
This learning object explains parachuting. | en | I

lom_gen:structure 2
»C__lom_gen:Atomic_

http://www.example.com/
objects/Para101

om_edu:description

Useful for learning some flight-related French terminology. | en | I

rdf:type

dcterms:RFC1766

Qm_edu:language

rdf:value

Figure 2. An example of a LOM instance expressed in RDF.

Expressing the LOM example using the draft LOM RDF binding gives us the RDF metadata
depicted in Figure 2.

In this example, we can see that in single RDF description, terms from several standards are
combined. RDF itself specifies a base vocabulary that is used for specifying resource types (the



“rdf:type” property), Dublin Core specifies a resource type that is used to represent languages
(the “dcterms:RFC1766” type), and LOM specifies a property to be used to describe a resource
using a value of that type (the “lom_edu:language” property). We note that the LOM RDF
binding has chosen to reuse Dublin Core properties for expressing common properties such as
“language” and “description”.

While the graph notation for RDF is very useful, it cannot be used for exchanging metadata
between computer systems. For this purpose, a serialization of RDF into an RDF-specific XML
language is used. This RDF/XML language is an example of an XML language that contains
XML elements with identical names as XML elements in the Dublin Core XML language (such
as “dc:description). But as noted, these elements will now be interpreted using the rules of the
RDF/XML language.

It is important not to confuse this RDF/XML serialization with RDF itself, which is not bound to
a specific syntax. We will return to a fuller description of RDF and the Semantic Web later.

It is also important to realise that RDF does not allow for incompatible usages of the same terms.
In contrast to XML, that allows the reuse of identical XML elements across many different XML
languages, with different structural constraints and interpretation, RDF does not leave room for
private semantics of properties. For example, the Dublin Core RDF property “dc:language” must
be used in accordance with the RDF semantics and RDF constraints defined by the Dublin Core
Metadata Initiative in all RDF metadata instances, even when used in, for example, the LOM
RDF instance given above.

Extending and Combining Metadata Descriptions

We have seen how both LOM and Dublin Core can be expressed in XML and in RDF. But can
we combine terms from both standards in a single document? The answer is both yes and no.

For example, on the surface it seems straightforward to add XML elements from Dublin Core to
a LOM XML document. Let us say we want to use the educational description from LOM, and
the subject from Dublin Core. Example 3 is the result of extending a LOM XML document with
a fragment from Dublin Core.

<?xml version = "1.0"?>

<lom xmlns="http://ltsc.ieee.org/xsd/LOM"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<general>
<identifier>
<catalog>URI</catalog>
<entry>http://www.example.com/objects/Paralll</entry>
</identifier>
</general>

<educational>
<description>
<string language="en">
Useful for learning some flight-related French terminology.
</string>
</description>
<language>en</language>
</educational>




<dc:subject xsi:type="dcterms:LCSH">t1750</dc:subject>

</lom>

Example 3. A LOM XML metadata instance, extended with a Dublin Core XML metadata fragment

As we can see, the Dublin Core XML fragment describing the subject of a resource can be added
into the LOM XML document. On the other hand, we can do the reverse, starting from the
Dublin Core XML document and adding the LOM fragment from the element
“Educational.Description”. The result is shown in Example 4.

<?xml version="1.0"2>

<metadata resource="http://www.example.com/objects/Paralll”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:lom="http://ltsc.ieee.org/xsd/LOM" >

<dc:subject xsi:type="dcterms:LCSH">t1750</dc:subject>

<lom:educational>
<lom:description>
<lom:string lom:language="en">
Useful for learning some flight-related French terminology.
</lom:string>
</lom:description>
<lom:language>en</lom:language>
</lom:educational>

</metadata>

Example 4. A Dublin Core XML metadata description, extended with a LOM XML metadata fragment

Note how we need to bring in the whole “educational” LOM element in order to create a context
for the “description” element. Simply copying the “description” element will be ambiguous, as it
is used in LOM to mean different things in different contexts. Also, we chose not to bring with us
the “General.Identifier” element, as the Dublin Core structure already provides that information.

rdf:type

dc:subject rdf:value

Y

http://www.example.com/
objects/Para101

lom_edu:description

dcterms:RFC1766

lom_edu:language

rdf:value

Figure 3. A combined LOM and Dublin Core metadata description, expressed in RDF.




How about doing the same kind of combination in RDF? It is just as straightforward: we simply
merge the two diagrams in our examples, and arrive at an RDF description looking like Figure 3.
In fact, our original LOM RDF example in Figure 2 already showcases this kind of combination.

One important difference between RDF and XML is that XML creates two cases: one case where
a LOM XML instance is extended with Dublin Core XML metadata, and one case where a
Dublin Core XML description is extended with LOM XML metadata (and this combinatorial
problem increases if we add a third standard to the mix). By contrast, RDF does not distinguish
between the two cases — the results are identical.

Mixing standards thus seems possible in both XML and RDF. Unfortunately, straightforward as
both examples appear, insurmountable problems start to appear as we examine how metadata
applications are to process the metadata we have constructed. The tool we need to understand the
difficulties is called an abstract model, and we now turn to this subject before returning to our
examples.

Abstract Models for Metadata

In order to be format-independent, both LOM and Dublin Core base are based on the notion of an
abstract model. The abstract model specifies the concepts used in the standard, the nature of
terms and how they combine to form a metadata description. The abstract model is the key used
by a metadata application to unlock the secrets of a metadata expression given in a specific
format, thus making it possible for a single standard, though expressed in several different
formats, to still be understood in a uniform way by users and applications. An early effort to
produce such framework for Dublin Core was presented in Bearman, Miller, Rust, Trant and
Weibel (1999).

The abstract models of LOM and Dublin Core are fundamentally different in several ways, and
these differences are a major source of difficulties when trying to combine the standards. As we
will see, applications will find that terms from one standard make little sense if interpreted in the
context of the other standard.

The Dublin Core Abstract Model

The Dublin Core Abstract Model (Powell, Nilsson, Naeve and Johnston, 2005) defines the kinds
of terms that can be used in Dublin Core metadata descriptions. Just as in RDF, a property is
used to describe a single aspect of a resource. In a Dublin Core metadata description, any number
of properties and their associated values may be used to describe a resource. The abstract model
tells us that values can be referenced using a value URI, and further described in related
descriptions. Values (such as titles) can be represented as value strings or using rich
representations (images, HTML, etc.).
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Figure 4. A simplified overview of the Dublin Core abstract model.

Syntax encoding schemes can be used to specify the precise syntax of value strings, while
vocabulary encoding schemes are used to indicate a controlled vocabulary used as source of a
value. An overview of the Dublin Core abstract model is found in Figure 4.

Using these constructs, it is possible to create very complex metadata descriptions. While some
formats do not support all constructs in the abstract model (for example, HTML meta tags do not
currently support the notion of related descriptions), the different formats all share the same
common understanding of the basic notions of properties and values.

The LOM Abstract Model

Similarly, the LOM standard uses an abstract model to specify the structure of LOM metadata
descriptions. In contrast to the property-value model used by Dublin Core, LOM uses a
hierarchical structure of elements-within-elements. Each element can be either a container
element, thus containing other elements, or a leaf element, which holds a value of a certain data
type. The top-level elements are called categories.

The abstract model of LOM is somewhat similar to the XML element structure (though the two
should not be confused). Unlike XML, LOM does not allow attributes on elements, nor does it
allow text content in elements other than leaf elements. The same is true for the other metadata
standards we have mentioned: MODS, MPEG-7 and the IMS standards — like XML, they are
hierarchical in nature, but they are neither identical to XML, nor compatible with each other.
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Figure 5. An overview of the LOM abstract model.

Interpreting Metadata Through the Lens of an Abstract Model

A binding is constructed by specifying how each kind of concept in the abstract model is to be
encoded in a particular format. Conversely, the binding also specifies how to interpret data given
in a specific format in terms of the abstract model. For example, when interpreting the Dublin
Core XML example in Example 2 using the rules of the Dublin Core XML language, we can
infer that “dcterms:modified” is a property, and “dcterms:W3CDTF” is a syntax encoding
scheme for the value string “2001-07-18.

Application A Application B

interface

implementation

interpretation

transport
DC XML binding I——> DC XML binding I

Figure 6. The process of encoding/interpretation of metadata within the
framework of an abstract model.

This fundamental process of encoding/interpretation is described in Figure 6. Application A uses
the Dublin Core abstract model to represent some metadata about a resource. This metadata is
encoded using the Dublin Core XML binding, and transferred to another application. Application
B will use the rules of the Dublin Core XML binding to interpret the XML data in terms of the
Dublin Core abstract model. This representation of the metadata can then be used in the
application. The LOM abstract model is similarly used by LOM applications as an intermediate
layer between the application and the bindings.



When two applications want to exchange Dublin Core metadata, they understand metadata
through the lens of the abstract model. The abstract model functions as an opaque interface, an
API, to the metadata. In practice, the exchange is realized using one of the Dublin Core bindings,
but the details of the formats are of no interest to the applications, which instead analyse the
metadata in terms of the interface given by the abstract model.

Note that it is possible to produce applications that process metadata without regard to the
abstract model. Such ad-hoc processing of metadata records requires that the precise content of
the records is well-known in advance, which is the case in many systems where extensibility,
modularity and refinements are not really issues. In contrast, the kind of interoperable
processing based on the abstract model as described above is necessary when an application
needs to be prepared for metadata constructs that do not fall within the limits of such a precise
description. Thus, it should be clear that interoperable processing is a basic prerequisite for
metadata interoperability.

Combining XML Languages

If we now try to understand what is really going on in the process of extending one standard
using terms from another standard, the problem is much more evident. Let us recall Example 4
given earlier, in which a Dublin Core XML metadata description was extended using a LOM
XML fragment. We saw that assembling the combined metadata description seems to work.

The step of interpreting the format in terms of the abstract model is the step that leads to
difficulties when combining standards. The process is depicted in Figure 7. As in Figure 6,
Application A produces Dublin Core metadata in the Dublin Core XML format, while
Application C produces LOM metadata in the LOM XML format and inserts that into the Dublin
Core XML metadata as in Example 4 above. Application B, which understands the Dublin Core
abstract model, tries to interpret this combined XML document using the Dublin Core abstract

Application A Application B

Application C

export X
import

— 1 DC abstract model [|— — —| DC abstractmodel | — — — — — — — LOM abstract model
encode Interpret ~ No interpretation! encode

transport inse:
DC XML binding I—’p DC XML binding [ LOM fragment Fﬂ LOM XML binding I

Figure 7. Combining the XML languages of LOM and Dublin Core.

model. The LOM XML fragment does not in any sense follow this model, and so is completely
incomprehensible to the Application B. As an example, the application will try to interpret
“lom:educational” as a property, but the child-element “lom:description” does not make sense as
a value of that property, so the interpretation will fail.

In fact, without manual intervention the metadata description will also be incomprehensible if
Application B was a LOM application, as it does not follow the LOM XML guidelines. For
example, the root element is different from what LOM demands.



Trying the other way around, extending LOM XML with Dublin Core XML fragments, results in
precisely the same kind of difficulties. The Dublin Core XML fragment does not follow the LOM
abstract model, and the encoded information is therefore inaccessible to a LOM application. For
example, the Dublin Core XML fragment uses XML attributes that cannot be meaningfully
interpreted as LOM elements.

Another issue that arises in both cases is that of handling of resource identity, as the two
standards have different conventions for how to identify which resource the metadata describes.

The result can be summarized in the following table:

Format Extended with  Processable by LOM = Processable by Dublin Core
fragment from application application
LOM XML Dublin Core XML Only LOM part None
Dublin Core XML | LOM XML None Only Dublin Core part

So it seems extending the current XML formats for LOM and Dublin Core using terms from the
other standard is a meaningless syntactic exercise, showing that the formats are, in fact, mutually
incompatible. The same is true for most XML languages for metadata, such as MODS and
MPEG-7 — they are based on different abstract models, and combining them will not increase
interoperability.

In many ways, it is similar to trying to combine, say, English and Chinese text in a single
Unicode document and expecting the combination to make sense, or to combine source code
fragments from two different programming languages based on the premise that they use the
same character encoding. There is actually no interoperability present, and the different metadata
fragments might just as well be transmitted in separate XML files.

In order to fulfil our five metadata interoperability principles, we must find a better approach.

Combining RDF Descriptions

What happens if we try the same exercise with the RDF? The first difference, as mentioned
earlier, is that the two cases of extending LOM with Dublin Core data or vice versa both lead to
the same result. There is only one resulting RDF description.

The second difference is that being a metadata standard in its own right, RDF also brings us an
abstract model with certain built-in base semantics. This means that RDF descriptions taken from
different standards will be processable by a pure RDF application based on the RDF abstract
model and semantics. The process is depicted in Figure 8, where, compared to Figure 7, the
format used for exchange has been changed to RDF, and the Dublin Core application
(Application B) has been replaced with an RDF application. Note how this differs from the case
of XML, where a generic XML application will not be able to meaningfully process any of the
information contained in different XML languages for metadata.
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Figure 8. Combining RDF metadata from LOM and DC, interpreted through the RDF model.

Now, the Dublin Core abstract model is mostly compatible with this base semantics of RDF. Any
metadata conforming to the Dublin Core abstract model can be translated into RDF and back. As
a consequence, Dublin Core applications (in the place of Application B in Figure 8) are actually
able to process the LOM metadata expressed in RDF. LOM properties will be correctly
understood as properties, and their values and datatypes will be processable. This means that any
metadata standard that is completely independent of Dublin Core, but is still expressed in RDF,
will be partially processable by a Dublin Core application. This is no coincidence — RDF and
Dublin Core has been heavily influenced by each other during their development.

By comparison, a LOM application (in the place of Application B in Figure 8) will only be able
to process those parts of the RDF files that have been mapped from LOM elements, and will not
be able to understand, for example, Dublin Core metadata expressed in RDF. The reason is that

No mapping!

mapping

LOM Abstract Model Dublin Core Abstract Model

conforms to

DC term I
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mapping

LOM element

LOM RDF property/class etc.
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Figure 9. Mapping LOM elements to RDF is done one-by-one, while any term conforming to the Dublin
Core abstract model can be mapped through the generic mapping to RDF.

the LOM elements must be translated individually, in an idiosyncratic way, to RDF — there is no
way to construct a general translation of the elements-in-elements-based abstract model of LOM
into the property-value-based abstract model of RDF and back. In other words, the abstract
model of LOM and the base semantics of RDF are fundamentally incompatible (Nilsson, Palmér,
Brase, 2003). This translation therefore cannot specify how to interpret general RDF
descriptions, other than those which come from LOM, in terms of the LOM abstract model.
Conversely, the LOM RDF binding cannot specify how to translate extensions of LOM into



RDF, as each of these extensions must be analyzed individually in order to determine how to
represent them in RDF.

The same incompatibility exists between any two metadata standards where one is based on an
elements-in-elements model and the other is based on a property-value model, for example
MODS and Dublin Core.

The result can be summarized in the following table:

Format Processable by | Processable by Dublin = Processable by RDF
LOM application Core application application
LOM+Dublin Core RDF  Only LOM part Dublin Core part + most Dublin Core part +
of LOM part LOM part

Reusing “Elements” Across Metadata Standards

What we have seen in this chapter is that mixing different metadata standards in the XML format
does not work the way we would want it to. Using RDF as a common format works well with
standards that use an abstract model compatible with RDF, but is still problematic for LOM and
other standards based on an elements-in-elements model.

The CORES Resolution (Baker and Dekkers, 2002), which has been signed by both the IEEE
LTSC and the Dublin Core Metadata Initiative, encouraged the owners of metadata standards to
assign URI references to their “elements”, the “units of meaning comparable and mappable to
elements of other standards”, but it did not specify what “comparable and mappable” meant. As a
consequence the owners of different standards assigned URI references to "elements" that are
created within different abstract models and uses metadata formats that rely on those
incompatible abstract models for their meaning and interpretation. The assignment of a URI
reference to an "element" means that it can be unambiguously cited, but it does not change the
nature of the "element": and it does not mean that it is meaningful to use a URI reference for a
LOM element as, e.g., a property URI in a Dublin Core metadata description. Similar
incompatibilities have been noted between, e.g., RDF and MPEG-7 (van Ossenbruggen, Nack
and Hardman, 2004 and Nack, van Ossenbruggen and Hardman, 2005).

The conclusion we may draw from the analysis in this section, is that we must not confuse the
components used in a metadata format and the constructs in the abstract model. The components
in a metadata format, such as “element URIs” may seem to be similar and compatible, but in
reality they belong to completely different frameworks that might not be compatible. There are
several problematic scenarios:

- Mixing two metadata formats created to conform to different abstract models, such as
Dublin Core XML and LOM XML. A similar example is trying to use parts of a Dublin
Core RDF description serialized in the RDF/XML language together with elements from
another XML language such as the LOM XML language. As LOM and RDF use
incompatible abstract models, this also leads to nonsense metadata constructs (Johnston,
2005a).

- In general, reusing metadata terms or elements adhering to different abstract models,
regardless of the metadata format used, such as reusing a Dublin Core element URI in a
LOM metadata description. As we have seen, this leads to nonsensical metadata constructs,
as the URIs of Dublin Core and of LOM must be interpreted in terms of different abstract




models.

-+ Mixing two different bindings of the same standard, when those two bindings apply
different interpretations to the use of similar components in the metadata format. This is
the case with the Dublin Core XML binding, which must be interpreted using a different
set of rules than the RDF/XML serialization of the Dublin Core RDF binding, though they
contain component parts that are confusingly similar.

So we must conclude that the notion of reusing “elements” between metadata standards and
formats using incompatible abstract models is fundamentally flawed. While assigning URI
references for the component parts of a metadata standard is clearly a worthwhile effort in other
ways, this does not really address the fundamental issue when creating interoperable metadata
standards, namely the compatibility of their respective abstract models.

In conclusion, we see that in order to reuse components of different standards in a machine-
processable way, the following criteria must be met:

1. The components must be unambiguously identified, so that components from different sources
can be clearly distinguished and their origins can be separated. This is addressed by the
CORES resolution.

2. The components must adhere to compatible abstract models. There is currently no resolution
to address this, although the Dublin Core — IEEE Memorandum of Understanding
(“Memorandum”, 2000) points in this direction.

3. A metadata format must be used that allows for consistent interpretation of the components
with respect to their respective abstract models. This too is mentioned in the “Memorandum”,
but has yet to be realized.

Metadata Mappings

One solution that has been proposed for solving the incompatibilities between metadata
standards is to produce mappings between them. Several such systems have been implemented
(see for example Godby and Childress (2003)). Mappings are useful, but suffer from a set of
major problems:

- Every mapping requires manual construction, defeating the goal of machine-processability.
Such a mapping must also be actively maintained in order to continue to be useful.

- The differences in abstract models necessarily make mappings incomplete and sometimes
ambiguous, leading to very imperfect interoperability. Mappings may be complex because
they may have to operate not on stand-alone "elements" but on complex nested constructs.

- Each new metadata standard requires a new set of mappings to each other relevant
standard, creating an astounding complexity. This can be somewhat relieved by mapping
all standards to a common “base standard”. But as we have seen, the notion of a common
base standard for metadata standards with incompatible abstract models is very
problematic.

- Realizing such mappings that are able to preserve not only the metadata constructs
themselves but also their semantics (including refinements) seems to be impossible in
principle in many cases.

« Mappings does not really solve the problem of combining parts from different standards,
only that of translating between standards.



As described in Johnston (2005a) and Nilsson et al (2003), and exemplified by the LOM RDF
binding, mapping between incompatible abstract models involves a complex re-modelling
process, and it is not always possible to make the resulting mapping bi-directional.

A Way Forward

It seems clear, then, that in order to achieve interoperability between metadata standards we need
to focus on the features of their respective abstract models. In particular, the abstract models of
the standards will need to be compatible, so that information expressed using one standard will
be available to applications using other standards.

The long-term solution is to go even further, to a common abstract model. Having all metadata
standards expressed using a common abstract model would greatly increase interoperability in
several ways. It would also create a natural separation between the specification of the structure
of metadata descriptions and the declaration of metadata terms used within that structure, so that
both LOM and Dublin Core would appear as metadata vocabularies within that one structure.

There are already initiatives to develop a common abstract model that covers both LOM and
Dublin Core, but unfortunately it seems to be impossible to arrive at such a model without re-
engineering at least one standard to retrofit it to the new abstract model, which naturally is a
major undertaking. But it seems clear that this is the only long-term solution to the
interoperability problems we have seen here. Reaching out to embrace the other important
metadata standards, such as MODS, MPEG-7 and the IMS set of standards is then the logical
next step. In addition, great care must be taken to ensure that such an abstract model does not
conflict with the emerging metadata format for the Web: RDF, which we will describe in more
detail below.

Application Profiles: Mixing and Matching of Metadata
Vocabularies

We now turn to an area where interoperability between metadata standards matters in a concrete
way. In order to support community-specific and regional needs, metadata standards generally
support a notion of customisation through application profiles. Enabling such customisations of
metadata standards are one of the ultimate goals of metadata interoperability as we have
described it in this chapter. In this section we will describe how application profiles rely on the
interoperability features of the respective metadata standards, and the importance of
interoperability between metadata vocabularies.

The metadata standards we have discussed use slightly different notions of application profiles.
Combined with the differences in abstract models we have discussed previously, this produces
significant hurdles for the interoperability that application profiles have been designed to solve.

However, we will see that these different approaches to application profiles to a large extent
depend on the differences in abstract models, and that solving the abstract model issue paves the
way for a merge into a single approach to application profiles, leading to a marked increase in
metadata interoperability.

Metadata Standards and Profiling

The community that develops and uses a metadata standard is rarely completely homogeneous. It
is common that in order to be useful to a community of reasonable size, a metadata standard
incorporates some degree of flexibility. The developers of services that make use of that standard



take advantage of this flexibility to customise the standard to meet the specific requirements of
their service and its audience.

In some cases, such customisation may involve selecting some subset of the full descriptive
capability provided by a rich or expressive metadata standard, on the basis that not all of the
functions supported by the standard are required in the context of a particular service. In other
cases it may involve enhancing the specificity of description to support some particular
requirements of a targeted user community.

The term profile has been widely used to refer to a document that describes how standards or
specifications are deployed to support the requirements of a particular application, function,
community or context, and the term application profile has recently been applied to describe this
tailoring of metadata standards by their implementers.

The process of “profiling” a standard introduces the prospect of a tension between meeting the
demands for efficiency, specificity and localisation within the context of a community or service
on the one hand, and maintaining interoperability between communities and services on the
other. Furthermore, different metadata standards may provide different levels of flexibility: some
standards may be quite prescriptive and leave relatively few options for customisation; others
may present a broad range of optional features which demand a considerable degree of selection
and tailoring for implementation.

We also noted earlier that the development of the World Wide Web had had an impact on the use
of metadata and on the development of metadata standards. One reflection of this changed
environment is the development of metadata standards that are designed to support generic
functions and to be applicable to a broad range of types of resource: the Dublin Core is an
example of such a standard.

Another perhaps more subtle aspect is a growing recognition that it is desirable to be able to use
community- or domain-specific metadata standards — or component parts of those standards — in
combination. It should not be necessary to perform complex, costly and sometimes incomplete
mapping of metadata each time resources or metadata move across community boundaries,
particularly since, as noted above, new mappings must be designed each time a new community
with a different standard joins the network of communication partners.

Rather, it is argued, the implementers of metadata standards should be able to assemble the
components that they require for some particular set of functions - and if that means drawing on
components that are specified within different metadata standards, that should be possible — safe
in the knowledge that the assembled whole can be interpreted correctly by independently
designed applications. Duval et al (2002) employ the metaphor of the Lego set to describe this
process: an application designer should be able to “snap together” selected “building blocks”
drawn from the “kits” provided by different metadata standards to build the construction that
meets their requirements, even if the kits that provide those blocks were created quite
independently.

Another motivating factor in this approach is the pragmatic desire on the part of the developers
of metadata applications to make use of existing work and reduce redundant duplication of effort.
If an implementer of metadata standard A has developed a component - say, a classification
scheme or controlled vocabulary - which another implementer using metadata standard B regards
as useful within their application, they should be able to “reuse” that existing component easily.
And further, applications processing the metadata descriptions from the two sources should be
able to establish that those reused terms are indeed the same terms.



Heery and Patel (2000) present a compelling vision of metadata implementers “mixing and
matching” “data elements”, constructing application profiles by selecting from the sets of “data
elements” provided by metadata standards and by other implementers.

In the cases of both the Dublin Core and LOM metadata standards, standards developers and
implementers recognise the application profile as a mechanism for realising the goals of metadata
modularity, extensibility and refinement. Both communities have developed some guidance for
the creation of such application profiles, which offer at least some measure of the mixing and
matching capability outlined by Heery and Patel (2000). See also “Dublin Core Application
Profile Guidelines” (2003), Baker (2003), Duval and Hodgins (2003) and IMS Global Learning
Consortium (2000).

As we have argued, the extent to which the DC and LOM standards meet their ambitious goals of
extensibility and modularity, and the form in which that extensibility and modularity are
implemented, is determined by features of the different abstract models underlying the standards.
And indeed this fundamental dependency is reflected in the fact that the two communities present
different approaches to the metadata application profile. In both cases, an application profile
enumerates the set of terms that may be referenced in some set of metadata descriptions, and
provides some, perhaps context-specific, information about how those terms are to be used.
Beneath that general similarity, however, lie some significant differences.

Dublin Core Application Profiles

In a Dublin Core application profile, the terms referenced are, as one would expect, terms of the
type described by the Dublin Core Abstract Model, i.e. a Dublin Core application profile
describes, for some class of metadata descriptions, which properties are referenced in statements
and how the use of those properties may be constrained by, for example, specifying the use of
vocabulary and syntax encoding schemes. The DC notion of the application profile imposes no
limitations on whether those properties or encoding schemes are defined and managed by DCMI
or by some agency: the key requirement is that the terms referred to in a DC application profile
are compatible with the DC Abstract Model.

It is a condition of that abstract model that all references to terms in a DC metadata description
are made in the form of URIs. The URI is a global identifier system. As long as the owner of a
URI adopts policies which guarantee the persistence of the URIs they assign - i.e. they provide
assurances that once a URI is assigned to a metadata term, it will continue to identify that
metadata term and will not be used for another resource - the requirement for unambiguous
identification of terms is met. Terms can be drawn from any source, and references to those terms
can be made without ambiguity.

This set of terms can be regarded as the “vocabulary” of the application or community that the
application profile is designed to support. The terms within that vocabulary may also be deployed
within the vocabularies of many other DC application profiles.

In addition to specifying what set of terms is to be used in their metadata descriptions, the
developers of a metadata application — in most cases at least — also need to specify how their
metadata descriptions are to be expressed for exchange between systems, i.e., they need to
specify the use of one or more formats for their metadata records. We have already noted that
Dublin Core provides a number of binding specifications which describe how to encode DC
metadata in a number of formats, and typically the application developer will select one of these
bindings.



Two examples of widely used Dublin Core application profiles are the OAI-DC and RDN-DC
application profiles, which we will now describe in more detail.

The OAI-DC application profile

The Dublin Core metadata standard has been widely implemented by services that make use of
the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) (Lagoze, Van de
Sompel, Nelson and Warner, 2002). The OAI-PMH is a fairly simple protocol that supports the
controlled transfer of metadata records over HTTP. The protocol allows the exchange of any
metadata that can be serialised in an XML format. As a baseline metadata standard, the OAI-
PMH specification requires that all OAI-PMH data providers must support the OAI DC
application profile.

In this profile, a metadata description must consist of statements which reference only the fifteen
properties of the Dublin Core Metadata Element Set. Properties are optional and repeatable, i.e.,
there is no requirement that all properties are referenced from statements in a metadata
description, and the same property may be referenced in multiple statements. References to
values must be made in the form of value strings, and neither vocabulary encoding schemes nor
syntax encoding schemes may be used.

The RDN-DC application profile

The Resource Discovery Network (RDN) is a collaborative service provided for the UK Further
and Higher Education communities which provides access to high quality Internet resources
selected by subject specialists for their value in learning and teaching. The RDN makes use of
OAI-PMH to transfer metadata records between partners, but rather than exchanging only OAI-
DC records, the RDN deploys its own application profile, RDN-DC, which supports the creation
of more expressive metadata descriptions tailored for the discovery requirements of the RDN
(Day and Cliff, 2003, Powell, 2003). The profile references a subset of the properties provided
by Dublin Core and requires the use of specific vocabulary encoding schemes for some of those
properties; it also references some properties that were defined specifically for the requirements
of the application.

Those local properties are defined and assigned URIs by the RDN in much the same way as the
standard properties provided by the Dublin Core metadata standard and they are referenced in a
metadata description, using a URI, in exactly the same way as a property provided by the
standard. And indeed although these properties were defined to meet the requirements of one
particular community, they may be referenced by the developers of other DC application profiles
developing applications for other communities if their usage is perceived as meeting some
functional requirement.

LOM Application Profiles

An examination of LOM application profiles reveals a slightly different approach. Instead of
mixing and matching elements from multiple schemas and namespaces (Heery and Patel, 2000),
it presents customisation of a single standard to address the specific needs of "particular
communities of implementers with common applications requirements" (Friesen, Mason and
Ward, 2002).

That is, a LOM application profile is designed within the framework of the LOM abstract model.
The terms referenced within a LOM application profile are terms of the type described by the
LOM abstract model. A LOM application profile describes how the hierarchical structure



described by the LOM standard is adapted to the requirements of an application — and indeed the
nature of that adaptation is itself constrained by the LOM standard, which specifies data types
and value spaces for each LOM data element and places some limits on the occurrences of LOM
data elements within a LOM metadata description. This contrast between the scope of the LOM
and Dublin Core metadata standards was noted earlier: while the Dublin Core standard specifies
a set of terms for used in metadata descriptions, it adopts a flexible approach to the ways in
which those terms are deployed by an application. The LOM standard, on the other hand, both
provides a set of data elements and defines a structural pattern of nested elements, with ordering
and cardinality constraints, within which those data elements are deployed and interpreted. This
set of standard structural constraints might be conceptualised as a “default” or “base” LOM
application profile, one to which all other LOM application profiles must conform.

The most widely used mechanism for extending the LOM metadata standard is through the use of
custom vocabularies to provide values for LOM data elements and the use of specified
taxonomies within the LOM Classification element. Although the LOM abstract model does not
require the use of globally unique identifiers for vocabularies and taxonomies, there are
mechanisms provided (the “Source” sub-element within a Vocabulary data type item, and the
“Source” element of the Classification category) which enable implementers to adopt
conventions to distinguish between vocabularies, and to confirm that two references are indeed
references to the same vocabulary.

Another common method of customizing LOM is through the tightening of structural constraints,
such as making elements mandatory or to remove elements altogether, or putting an upper limit
on the number of instances of a certain element. It is also common to produce additional
guidelines for the usage of specific elements within the target community, something which is of
particular interest for national customizations of LOM such as the UK LOM Core.

The LOM abstract model provides further possibilities for extensibility through the use of what it
calls “extended data elements”, i.e. the use within a LOM metadata description of data elements
other than those defined by the LOM standard itself.

Three widely used LOM application profiles are the UK LOM Core, the RDN-LTSN LOM
Application Profile and the Curriculum Online Metadata Schema, which we will now describe in
more detail. The first two of these also demonstrate how one more generic application profile
(the UK LOM Core) can form the basis for a second, more refined application profile (the RDN-
LTSN LOM Application Profile).

UK LOM Core

The UK LOM Core LOM application profile is the result of efforts to promote common practice
in the implementation of the LOM in UK educational contexts, in order to improve the ability of
LOM metadata applications to exchange effectively the information required to support a number
of basic functions (UK LOM Core, 2005).

The UK LOM Core:

- specifies a “core” set of LOM data elements that should be present in LOM metadata
instances

- provides information on the use and interpretation of LOM data elements within the UK
context

- specifies a small set of vocabularies that should be used to provide values for some LOM



data elements

RDN-LTSN LOM Application Profile

As noted above, the Resource Discovery Network (RDN) provides a Dublin Core application
profile for metadata sharing between partners in the network. The RDN has also engaged in
collaborative work with a similar network, the Learning and Teaching Support Network (LTSN)
(since 2004 a part of the UK Higher Education Academy). Metadata sharing within this broader
network was based on the use of a LOM application profile known as the RDN/LTSN LOM
Application Profile (RLLOMAP) (Powell, 2005).

RLLOMAP is designed to support a specific set of functions to be delivered by the RDN-LTSN
services. However, it is also designed to be compliant with the UK LOM Core. i.e., any LOM
metadata description constructed according to RLLOMAP also complies to UK LOM Core.
RLLOMAP specifies a set of LOM data elements and provides quite detailed guidelines for their
use in the context of the RDN-LTSN community. It also mandates the use of some community-
specific vocabularies (in addition to the LOM standard vocabularies) for some elements, and
makes recommendations for the use of specified taxonomies for the LOM Classification element.

Curriculum Online Metadata Schema

The Curriculum Online service provides access to multimedia resources which support the
curriculum taught in primary and secondary schools in England, and a metadata schema - an
application profile of the LOM - was developed to support the specific requirements of this
service. In particular, the schema supports the controlled classification of learning resources
required to enable the rich searching and browsing functions that are provided to teachers and
other users of the Curriculum Online web site (Department for Education and Skills, Simulacra
and Schemeta, 2003a, 2003b).

Like RLLOMAP, the Curriculum Online Metadata Schema specifies which elements are required
to occur in metadata descriptions and provides guidelines for providing values for those
elements.

In addition, it defines some extensions to the LOM standard in the form of some additional data
elements and vocabularies for the values of some of these elements. These “extended data
elements” include a group of elements to support the description of the “Method of Delivery” of
the resource, a group of elements that provide an indication of the cost of a resource, and an
element to capture the name of the application used to create the metadata record.

Application Profiles and vocabularies

As can be discerned from the above discussion, the notion of a metadata “vocabulary” is
somewhat ambiguous and is used differently in the two standards. In LOM, a vocabulary is a set
of tokens with a specified “source” that can be used as values for certain elements. For example,
the LOM element “Educational.Difficulty” can be used with values from a vocabulary specified
in LOM, and containing the tokens “very low”, “low”, “medium”, “high” and “very high”. The
“Source” must then be set to “LOMv1.0”, to indicate that the values are from the LOM standard

itself.
In Dublin Core, a vocabulary can be one of two things:

1. A set of concepts as specified by a vocabulary encoding scheme. For example, the
“dcterms:LCSH” vocabulary encoding scheme refers to the vocabulary formed by the set of



Library of Congress subject headings.

This corresponds closely to the notion of vocabulary in LOM, with the subtle but notable
difference that Dublin Core deals with the concepts themselves (that may be referenced using
a value string or a value URI, depending on the application), while LOM deals only with
vocabulary tokens, i.e., opaque strings.

2. A set of metadata properties together with their definitions. For example, the Dublin Core
Element Set, consisting of the 15 original Dublin Core elements, is such a vocabulary.
The closest correspondence in LOM to this kind of vocabulary is the set of LOM elements.

We will use the term value vocabulary to denote the first kind of vocabulary, as the terms in such
a vocabulary are used as values in metadata instances. The term element vocabulary will be used
for the second kind, which signals the close relationship to the imprecise concept of metadata
“elements” that we have already encountered. These terms are not in general use, but we have
found it useful, for the purposes of this chapter, to distinguish between the two.

Element vocabularies and value vocabularies have fundamentally different characteristics. While
value vocabularies are used to construct taxonomies and thesauri that describe relationships
between concepts in terms of broader/narrower, containment etc, element vocabularies are used
to construct schemas and ontologies that describe how metadata instances are to be constructed.

As noted above, both standards have a notion of value vocabularies that include a notion of
“vocabulary source”. When specifying a value of a LOM element of the type “Vocabulary”, the
value may be accompanied with a “Source” string that gives an indication of the origin of the
value, and therefore its interpretation. Similarly, Dublin Core uses the concept of vocabulary
encoding schemes to specify the origin of a value, which may also be identified using a value
URI. Being able to specify the source of a vocabulary is a requirement for interoperable metadata
descriptions, and an important prerequisite for modular application profiles.

When it comes to element vocabularies, the situation is less clear. In Dublin Core, terms in
element vocabularies, i.e., properties, must be assigned a URI to be usable in Dublin Core
metadata descriptions. In this way, Dublin Core enables application profiles to mix Dublin Core
properties with other properties in a controlled fashion, as the URI will allow applications to
disambiguate between properties from different sources that are used in the same application
profile.

However, the data elements defined by the LOM standard, as well as extended elements, are
referenced not by globally unique identifiers, but by short human-readable labels like "Identifier"
and "Context" (or "General.ldentifier" and "Educational.Context", if their category is taken into
account). There is an implicit assumption that a human reader or an application reading or
processing a LOM metadata description will be able to determine from some contextual
information that the data element is that data element defined by the LOM standard.

Perhaps for this reason the term "LOM application profile" appears to have been applied
principally, though not exclusively, to those descriptions of LOM implementation that are limited
to the data elements specified by the LOM standard, with extensibility restricted to the
specification of value vocabularies and taxonomies. Where extended data elements are used in
LOM application profiles, the implementer assigns labels to distinguish their data element names
from those used for data elements defined by the LOM standard and in other LOM application
profiles — but since these are simply arbitrarily chosen labels, rather than identifiers assigned with
an identifier scheme, they can not be guaranteed to be unique. For this reason, LOM lacks
support for machine-processable reuse of element vocabularies across application profiles.



The situation is aggravated by the fact that the LOM XML binding does provide namespace URIs
for both the LOM elements and for elements used in extensions to LOM. But as these URIs are
not part of the LOM abstract model, they cannot be used outside the LOM XML binding to refer
to the relevant LOM element.

Application Profiles and Bindings

The developer of a metadata application — in most cases at least — also needs to specify how
metadata descriptions constructed according to their profile are to be expressed when they are
exposed for exchange between systems, i.e. they need to specify the use of one or more formats
for their metadata records. The developer will probably select one of the bindings specified by
the metadata standard. In some cases they may develop a new binding to meet some particular
requirements of their context (as is proposed by The International Press Telecommunications
Council (2005)). Where an application profile developer develops a new binding, they may
choose to optimise that binding for the context of their application, e.g. by supporting only some
subset of the constructs in the full abstract model of the standard. In any case, if a new binding is
developed it is essential that the developer makes available a description of how the syntactic
features they use are to be interpreted in terms of the standard's abstract model. They may choose
to provide an algorithm or transformation by which a record conforming to their binding can be
converted into a record using a standard binding.

One promising framework for this kind of transformation specifically into RDF that is becoming
increasingly popular is GRRDL, described in Hazaél-Massieux and Connolly (2005) as “a
mechanism for Gleaning Resource Descriptions from Dialects of Languages; that is, for getting
RDF data out of XML and XHTML documents using explicitly associated transformation
algorithms, typically represented in XSLT”.

The Limitations of Mix and Match in DC and LOM Application Profiles

The first point that we have highlighted is that the DC and LOM concepts of the application
profile are both rooted in the corresponding abstract models underpinning those standards. A
Dublin Core application profile refers to properties, vocabulary encoding schemes and syntax
encoding schemes; a LOM application profile refers to LOM data elements or extended data
elements and their value spaces, using the range of datatypes specified by the LOM standard. As
has already been discussed these are fundamentally different types of construct: an occurrence of
a LOM data element is interpreted through the semantics of the LOM abstract model, and a
reference to a property is interpreted through the semantics of the DC abstract model. Neither
approach is sufficient to support the Lego-like assembly of a modular metadata description which
draws on both the LOM and DC metadata standards.

Secondly, the LOM standard provides not only a set of data elements, but also a default pattern
for the use of those data elements, a “base” application profile to which other community- or
application-specific LOM application profiles should also conform.

Closely related to this second point is that the LOM abstract model does not define a mechanism
for uniquely identifying and referencing data elements within a global context. While the use of
extended data elements is possible, the disambiguation of those elements is reliably possible only
within a context where the use of names is controlled. The LOM abstract model does not lend
itself to the reuse of data elements within a global context, or to the sharing of LOM metadata
descriptions beyond a context in which names are controlled.

The DC and LOM application profile constructs are both useful in formalising the way in which



the implementers of metadata standards customise and (to a greater or lesser degree) extend those
standards. They also provide a basis for disclosing existing work and encouraging the reuse of
components used within existing application profiles, again subject to some limitations. They
highlight that a degree of mixing and matching is indeed possible — but only within the
framework of the corresponding abstract model. For DC and LOM, the incompatibility of those
abstract models means that the application profile construct is not sufficient to address the
problem of how to use component parts of those two standards in combination.

Refinement and Metadata Semantics

The word semantics in the context of metadata is closely linked to the notion of machine-
processability. Semantics usually refers to the assignment of meaning to an otherwise
meaningless syntax. The need for human semantics in metadata is clear — metadata is after all
used for encoding information for human consumption. But what are the benefits of machine
semantics in metadata standards?

The benefits are of several distinct kinds. Semantics are the underpinnings of abstract models for
metadata, which we have already seen to be fundamental in metadata interoperability. Semantics
provide avenues for automatic discovery of the meaning of metadata expressions, thus allowing
metadata applications to partially understand metadata extensions encountered in previously
unknown application profiles. Formal semantics provide the foundation for processing metadata
in software agents and ontology-based reasoning systems, which provide the basis on which to
build machine-processable mappings between semantically overlapping standards.

The Role of Refinements in Dublin Core and LOM

The Dublin Core abstract model provides two basic primitives for the expression of metadata
semantics: sub-properties and sub-classes. Both primitives are used to specify so-called
refinements, that serve the important purpose of allowing more fine-grained descriptions to be
understood by applications that only know how to process more coarse-grained descriptions.

Suppose we declare the property “ex:illustrator” to be a sub-property of the Dublin Core element
“dc:contributor”. Applications that know the difference between “dc:contributor” and
“ex:illustrator” may use the values of the two properties in subtly different ways that are
appropriate to the situation. However, an application that does not know how to process the
“ex:illustrator” property may still choose to process the value of that property in the exact same
way that it would process a value of the “dc:contributor” property. Thus, a resource with an
“ex:illustrator” of “Gary Chalk” may be said to simultaneously have an implicit “dc:contributor”
of “Gary Chalk”. The formal word for this process of implicit and automatic “creation” of
property values is entailment.

Note that the process of entailment is mandatory in the sense that it is considered invalid to
specify a value of the “ex:illustrator” property that is not at the same time a valid value for
“dc:contributor”. This must of course be reflected in the definition of the sub-property: if not all
valid values of the sub-property are also valid values of the property, the sub-property definition
is invalid. For example, while the values of an “ex:owner” property are sometimes also valid
values of “dc:contributor” (as owners sometimes also participate in the creation of a resource),
this is not a/ways the case. Thus, “ex:owner” cannot be declared a sub-property of
“dc:contributor”. The details of how to define refinements and some of their consequences are
given in Johnston (2005b).

The other kind of refinement, sub-classes, is used together with the specification of the type of a



resource using the “dc:type” property. For example, the type “dctype:Stilllmage” is a sub-class of
“dctype:Image”. Sub-classing simply means that everything that is of the type
“dctype:Stilllmage” is simultaneously of the type “dctype:Image”. This allows for a fine-grained
specification of resource types, while allowing for interoperability with less capable applications.

The process of simplifying metadata records based on refinements is sometimes referred to as
dumb-down, as it can be used to construct a less refined, but more widely processable metadata
record. It can be performed by the application itself, or in a pre-processing step.

LOM does not have a corresponding notion of refinement. In fact, the LOM standard states that
“extended data elements should not replace data elements in the LOM structure”. The reason is
in part that there is no machine-processable way to specify that a LOM extension refines a LOM
element. Therefore, an application would not be able to recognize that an extended LOM element
can be processed in the same way as the LOM element it replaces, or dumbed-down to the
original LOM element.

Formal and Informal Semantics

Returning again to our metadata format examples, let us try to understand how an application
arrives at an understanding of the different metadata expressions.

When processing the LOM XML example in Example 1, an application will first need to know
what XML language is being used, as the XML document itself generally does not specify that
information. So, given that we know that our data is given in the LOM XML format, the
interpretation of each XML element is given by the LOM XML binding — a “description” XML
element within an “educational” element must be interpreted as the “Description” LOM element
in the LOM category called “Educational”. The LOM standard itself specifies the human
semantics of this element: “Comments on how this learning object is to be used”.

Note that in this process, the interpretation must be performed by reference to the published
LOM standards. Any machine processing must be manually tailored to each and every element of
the metadata structure. This is an example of informal semantics, or semantics that is explicit,
but not machine-processable.

Let us contrast the previous example with the RDF example from Dublin Core in Figure 1. An
RDF application will process the RDF metadata and find an RDF property named “dc:format”.
An application can use the URI of the property to obtain a description of the property provided
by the authority that defines it (the Dublin Core Metadata Initiative), using the RDF Schema
language. That description includes human-readable information about the property, and also
machine-processable data describing its relationships to other resources, including refinement
relationships with other properties.

The value of the property, “text/html”, is seen by the application to be an instance of
“dcterms:IMT”. The Dublin Core RDF Schema provides human-readable information to indicate
that this class is the set of all Internet Media Types, or MIME types; it also provides machine-
processable data describing the relationship of this class to other resources.

The fact that “dc:format” is a property and “text/html” is an instance of the class “dcterms:IMT”,
and further information based on the descriptions of that property and that class, can be inferred
with no human intervention.

What we find here is an example of formal semantics, where an application can automatically
process the metadata structure to arrive at a partial understanding of the metadata. If the metadata



includes properties that refine other properties, these refinements can also be processed
automatically, for example in order to perform a dumb-down of the metadata record.

Note that the application does not need to know what metadata standard it is processing, but only
needs access to the corresponding machine-processable RDF schemas that describe the element
and value vocabularies used in the description. This points to a major difference between XML-
based languages and RDF: XML-based languages provide their own, often incompatible
semantics. XML specifications such as XML Schema are limited to capturing syntactic features
of XML languages, and cannot describe their semantics. On the other hand, RDF provides a basic
framework for metadata semantics that all standards expressed in RDF conform to. The formal
semantics of RDF is specified in Hayes (2004), and the semantics of RDF metadata can be
expressed using the RDF schema language (Brickley and Guha, 2004). Dublin Core has chosen
to use RDF Schema as a way to express the formal, machine-processable semantics of the Dublin
Core properties and encoding schemes, for use also in metadata formats other than RDF.

An interesting discussion of different kinds of metadata semantics can be found in Uschold and
Gruninger (2002). The approach to metadata found in the RDF set of standards has many
intriguing features that might serve as a source of inspiration for future learning object metadata
standards, so we now turn to a short introduction to RDF and the Semantic Web.

RDF and the Semantic Web

RDF has been created to enable the vision of the “Semantic Web” — a web of machine-
processable information, extending the current web. RDF tries to reach this goal by:

- Using a coherent framework based on URIs for identification of metadata elements such as
properties, classes and resources. RDF is perhaps best described as a “semantizisable” web,
which provides a sufficiently coherent metadata framework that its component parts can be
given proper formal semantics without inconsistencies or ambiguities.

- providing a basic abstract model for metadata, with certain built-in semantics. This basic
model allows applications to store and process metadata from different standards in a
common framework.

- being extensible, both structurally and semantically. We have already seen examples of
semantic extensions in the form of refinements, as well as proof of the straghtforwardness
of structural extensions when combining several metadata standards.

- being web-capable, unlike traditional databases and knowledge representation systems.
While the RDF model is based on previous work on knowledge representation systems, it
differs substantially in that it integrates with WWW standards such as XML and URIs.

+ being decoupled from the information it describes. In RDF, anyone can express any
statements about any resource. It is up to the application to determine trustworthy sources.
This allows for multiple descriptions, appropriate for different contexts, of a single
resource to co-exist.

- allowing for self-describing metadata. Thanks to its machine semantics, RDF applications
can partially process new metadata without previous knowledge of the standards involved.

The RDF standard (Klyne and Carroll, 2004, Manola and Miller, 2004) is by its very nature a
semantic standard. In RDF, the tokens used in the format do not merely identify syntactic
elements, but by design refer to notions in the real world. By contrast, XML elements are by
themselves only syntactic placeholders that need the semantics of an XML language to be given



meaning (Cover, 1998). Similarly, the statements expressed in RDF are not just data structures,
such as is the case with XML document trees, but have real-world meanings. Every RDF
statement has a real-world interpretation, independently of any other RDF statement. RDF can
therefore be described as a framework for extension and recombination of independent
statements about the world of resources.

The Semantic Web is a visionary project initiated by the W3C with the stated purpose of
realizing the idea of having data on the Web defined and linked in a way that it can be used by
machines not just for display purposes, but for automation, integration and reuse of data across
various applications.

It was motivated by the very same problems that motivates the development of metadata
standards: the fact that raw media, in the form of text, HTML, images or video streams, contains
meta-information that may be readily deducible from the context for the human consumer (the
name of the author, the kind of material contained within, etc.), but is mostly inaccessible to
computers. Making this information available to computers in order to enable a whole new class
of semantics-aware applications, was the driving vision that created the Semantic Web project.

Most traditional metadata approaches take the view of metadata as being mostly a digital
indexing scheme to use in cataloguing and digital libraries. What distinguishes the Semantic
Web from these approaches to metadata are two important things:

+ The Semantic Web is designed to allow reasoning and inference capabilities to be added to
the pure descriptions. This includes stating simple facts such as "a hex-head bolt is a type
of machine bolt”, but extends to the inference of new relationships from known data. This
is an important feature to allow intelligent agents and other software to not only passively
consume descriptions, but to act on them as well.

» The Semantic Web is a web-technology that lives on top of the existing web, by adding
machine-readable information without modifying the existing Web. It is designed to be
globally distributed with all that this implies in terms of scalability and flexibility.

The Semantic Web is a layered structure. XML forms the basis, being the standardized transport
format. RDF provides the information representation framework, and on top of this layer,
schemas and ontologies provide the logical apparatus necessary for the expression of
vocabularies and for enabling intelligent processing of information.

This includes the definition of semantic mappings between overlapping metadata standards. As
the metadata constructs are based on a common abstract model, the complexity of mappings and
the level of precision in mappings are dramatically increased in comparison to mappings between
standards using different abstract models (Uschold and Gruninger, 2002).

Vocabularies, RDF Schemas and Ontologies

Using RDF Schema, the semantics and properties of both element vocabularies and value
vocabularies can be expressed in a common framework. For example, Dublin Core provides one
element vocabulary, and the LOM RDF binding provides another. RDF schema allows for the
description of relationships between terms not only within one single standard, but also across
standards. It also allows for description of any number of attributes of the vocabulary terms
themselves, using any RDF properties. For example, the Dublin Core term “dcterms:abstract” is
described by the Dublin Core RDF schema as depicted in Figure 10.

RDF Schema contains a base semantics that is used in practically all RDF descriptions, and that
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Figure 10. The RDF schema description of the Dublin Core term “dcterms:abstract”.

encompasses both property refinement and sub-classing. The following table gives some
examples of what can be expressed in RDF Schema, and using what construct.

In order to express Use this construct
This resource is a Person rdf:type
Student is a kind of Person rdfs:subClassOf
“creator” is a Property rdf:Property
“hasBirthday” can only be used to describe a Person rdfs:domain

Another promising RDF-based framework for defining value vocabularies, especially in the form
of hierarchical taxonomies or thesauri is SKOS, Simple Knowledge Organization System (Miles
and Brickley, 2005).

For more advanced semantics, onfologies using the Web Ontology Language OWL, provide a
foundation for expressing complete conceptual models of a domain, allowing for a dramatically
higher level of automation that allows computer systems to operate at a conceptual level much
closer to the human level. As described in Heflin (2004), OWL can express that the Person and
Car classes are disjoint, or that a string quartet has exactly four musicians as members, something
that RDF Schema cannot do.

Another important benefit of ontologies is that they allow for the automatic deduction of
additional information about resources based on existing information. For example, if the
metadata of a certain learning object states that it requires support for a specific set of standards,
such as CSS2 and XHTML, and it is separately known which web browsers support those
standards, an inference engine can infer that a certain browser works with that learning object



without being explicitly told so. In the same way, ontologies provide support for semantic
mappings between vocabularies that partially overlap, so that users may ask questions in terms of
one vocabulary and receive answers that are described using a separate vocabulary.

From this short introduction to the notion of metadata semantics, we can conclude that a
metadata framework built on the foundation of a solid abstract model, with support for machine-
processable semantics, is a desirable goal for future learning object metadata standards. The
metadata standards in current use go some way towards the fulfilment of this goal, but they
operate mostly in isolation from each other, and one important component is missing: a metadata
standardization framework. Throughout this chapter, we have gathered enough requirements to
be able to put together a vision of such a framework.

Towards an Interoperability Framework for Metadata
Standards

If we try to look forward into the future of learning object metadata standards, it seems clear that
an improved approach to metadata standardization is needed in order to fulfil the metadata
interoperability requirements we set forth early in this chapter.

Abstract Model
Profile Model

Abstract Framework

Schema model

conform t

expressed in expressed in

c fi o
Metadata formats I Metadata vocabularies e Application profiles I

\ /

|
XML, RDF, XHTML, etc. I
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Figure 11. A possible structure of a future metadata standardization framework.

We have already seen examples of the four central components that are needed to create such a
framework. The framework rests on the basis of an abstract model for metadata. A schema
language allows for the definition of metadata element and value vocabularies that fill the
abstract model with metadata terms and relationships between terms. A framework for definition
of machine-processable application profiles use the abstract model to constrain vocabularies to
fit the requirements of specific communities. Finally, metadata formats encode metadata
descriptions using any combination of vocabularies and application profiles.



Thus, the current use of the term “metadata standard” or “metadata schema” will need
refinement, resulting in at least four different kinds of metadata standards:

The overarching abstract model standard. This will also include a specification for how to
express the semantics of vocabularies adhering to the abstract model as well as a
specification for how to express application profiles in a machine-processable way.

Metadata format specifications. These will include bindings of the abstract model to a set
of formats and systems, including XML, RDF, database layouts, programming languages,
etc., and will replace current format bindings for the different metadata standards.

Metadata vocabularies. These will include metadata terms from different communities. The
Dublin Core terms, the LOM elements and so on are examples of metadata element
vocabularies, and a large set of value vocabularies also fit into this category.

Application profiles. These will specify usages of metadata vocabularies in complex
combinations. As we have noted, the LOM standard contains a basic application profile,
and this aspect of LOM will be separated from the definition of the element vocabulary
consisting of the LOM elements.

Common Abstract Model

The basis of the envisioned learning object metadata standardization framework is the abstract
model. As we have seen, the incompatibilities of abstract models are the most significant
stumbling blocks for metadata interoperability. The development of a common abstract model for
metadata is therefore of central importance if we are ever going to experience true metadata
interoperability.

Developing such an abstract model is a major undertaking, not so much because of the technical
difficulties, but because of the lack of coordination between the major standardization
organizations involved. Still, the process is necessary and will give a number of tangible benefits,
including:

Clear guidelines on how to create and maintain customized metadata vocabularies. There is
currently some confusion on how to best produce vocabularies, much due to the differing
fundamental principles for vocabularies in the different metadata standards.

Fine-grained control over relationships between terms from different standards, including
refinement and partial mappings. Automation of interoperable metadata management will
be greatly improved, and metadata vocabularies will be able to build upon each other.

A single set of format bindings. Contrast this with the current situation, which requires
every metadata standard to have its own set of format bindings. This will make life easier
not only for metadata standardization bodies, but also for applications that will only need
to support one format.

A single framework for extending and combining metadata from different standards. This
will enable standardized principles for the construction of interoperable application
profiles.

A single storage and query model for very different types of data and schemas. For
example, storing metadata from different specifications in the same database is
straightforward. Implementing searching that includes dependencies between metadata
expressed in different schemas is simplified.



Thus, the development of a common abstract model leads the way towards support for all our
metadata interoperability principles: extensibility, modularity, refinement and machine-
processability.

Interoperable Vocabularies

In a metadata standardization framework supported by a common abstract model, the work of
defining new metadata terms is much reduced. As the “grammatical structure” of metadata
descriptions is already laid down, the only thing needed is to fill the abstract model with specific
terms. In order to do so, we need a language for describing metadata vocabularies. We will call
this a schema language. RDF Schema is one such language.

The main benefit of developing vocabularies in a common framework is that reuse across
standards will be much simpler. As an example, many elements in the LOM standard are not
specific to learning, and have similar counterparts in other standards. In a common framework,
the LOM elements will be made into a fully-fledged element vocabulary capable of being
extended, refined and semantically annotated. The semantic relationships to terms in these other
standards can be made explicit and machine-processable.

One interesting consequence of a common element and value vocabulary framework is the
possibility of unexpected collaboration. That is, as others specify relationships to your
vocabulary, new relations between resources will start to appear, and you will be able to process
metadata that you have not explicitly declared semantic relationships to.

Modular Application Profiles

A common framework for expressing application profiles will be a necessary building block for
the construction of reusable application profiles. The framework must not be tied to a specific
metadata format, but must operate at the level of the abstract model, so that the application
profile can be reused in all metadata formats.

By separating the specification of application profiles from the declaration of metadata
vocabularies, we will reach a partial solution to the differences between the LOM and Dublin
Core approaches to application profiles. One reason for the LOM approach to application profiles
of restricting the base standard seem to be that the LOM standard specifies four separate things in
a single standard: an abstract model, an element vocabulary, a set of value vocabularies and a
basic application profile. By using the metadata standardization approach proposed here, these
components would be split into separate specifications, leading to a much higher incentive for
mixing and matching, while still retaining all the advantages of the combined approach in terms
of validation and conformance testing.

Promising work on machine-processable application profiles can be seen in, e.g., “Guidelines”
(2005). There are also other initiatives for such frameworks, but none are yet in widespread use.

Implications

We have seen clear evidence that RDF family of specifications provide an abstract framework of
the kind discussed here, including a vocabulary description framework (RDF Schema) and
support for ontologies through OWL. However, it remains to be seen if using RDF will be
acceptable as a foundation for the wide set of applications that use LOM, Dublin Core, the IMS
standards, etc. RDF was designed primarily for the Web, while the metadata that are of concern
to us are important for a wide range of systems that are not restricted to web-oriented systems.



Dublin Core has proven that simple metadata formats such as HTML meta tags are popular and
useful, and have contributed immensely to the spread of metadata tagging. LOM has a relatively
complex structure, but it is similar enough to the structure of XML documents to be simple to
use. RDF provides no such simple syntax, and the apparently steep learning curve remains a
major obstacle to the acceptance of RDF. For example, while several versions of the RSS news
syndication format have tried to use RDF, new versions seem to always step away from RDF in
favour of a more predictable XML approach.

This points to a general observation: in any given application it is always easier to devise a
custom XML language with custom semantics than to use a complex metadata framework. The
extra work involved in being compatible with such a metadata framework does not become
evident until the amount of metadata interactions increases beyond a certain threshold. It seems
more and more systems are reaching that threshold and are looking for such a framework.

On the other hand, if the RDF specifications are not reused for such a framework, there is a real
risk of reinventing much of what has already been achieved within the Semantic Web. Dublin
Core is one example, as its abstract model closely resembles that of RDF. Dublin Core on the
one hand uses its own abstract model and metadata formats, while on the other hand relies on
RDF Schema to specify the machine-processable semantics of its terms.

Will RDF be the future of learning object metadata standards? Only time will tell. But it seems
certain that many of the features of RDF are destined to become part of learning object metadata
standards, whatever form they will take.

Conclusion

We have demonstrated that true metadata interoperability is still, to a large extent, only a vision,
and that metadata standards still live in relative isolation from each other. The modularity
envisioned in application profiles is severely hampered by the differences in abstract models used
by the different standards, and efforts to produce vocabularies often end up in the dead end of a
single framework. In order to enable automated processing of metadata, including extensions and
application profiles, the metadata will need to conform to formal metadata semantics.

To achieve this, there is a need for a radical restructuring of metadata standards, modularization
of metadata vocabularies, and formalization of abstract frameworks. RDF and the Semantic Web
provide an inspiring approach to metadata modelling: it remains to be seen whether that
framework will be reusable for learning object metadata standards.
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