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Abstract

The theme of this thesis is dynamic geometry, a new way of exploring classical
geometry using interactive computer software. This kind of software allows the
user to make geometric constructions on a computer's screen. The constructions
might consist of points, lines and conics whose positions have been constrained
in various ways. The constraints, which may involve incidences, distances and
angles, can be added and removed dynamically. For example, to force a line
to always be incident on a point, the user would simply grab the line with the
cursor and drop it onto the point. Any object whose position is not completely
determined by the constraints can be grabbed and dragged around on the screen.
The rest of the objects will then automatically self-adjust in order to keep the
constraints satis�ed. Dynamic geometry software is primarily used for teaching
mathematics, but is useful in any situation where it is important to understand
the geometric properties of a dynamic system.

Over the last few years, a number of tools for dynamic geometry have been
developed. Most of them have focused on elementary Euclidean geometry. In
this thesis we present a new software that has been based entirely on projective

concepts and thus allows us to illustrate the classical theorems of projective ge-
ometry. The software has also extensive support for di�erent types of metrics,
which makes it possible to explore both Euclidean and non-Euclidean geometry.
In fact, the user is given direct access to the absolute elements which de�ne the
metric. Moreover, the system can handle objects in the complex projective plane,
which permits, for example, the circular points in Euclidean geometry to be used
in geometric constructions.

We discuss how the user interface of a dynamic geometry system should be
designed and we identify a number of problems and shortcomings which the user
interfaces of all previous systems seem to su�er from. Most of these defects are
related to the fundamental problem of choosing the �right� solution of an under-
determined system of constraint equations. We show how this problems can be
solved by letting the system automatically add extra constraints if necessary, and
by using a richer internal representation based on oriented projective geometry.

The thesis is written in English.

Keywords: dynamic geometry, visualization, computer-assistance in education,
learning systems, constraint programming, user interface, projective geometry,
oriented geometry, Euclid, metric.
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Chapter 1

Introduction

1.1 Projective geometry and its history

The desire to study geometrical relationships arises in many �elds of human activ-
ity, ranging from architecture to particle physics. To the early Greeks, geometry
o�ered a way of describing the geography mathematically, which helped them
make maps and navigate. Actually, the term �geometry� is derived from the
Greek words for �earth measure�.

Greek geometers were primarily interested in simple and very concrete geo-
metric concepts, such as points, lines, triangles, ellipses, distances and angles.
Soon, however, geometers came to realize that concepts line �point� and �line�,
which are very concrete and intuitive to us, could in fact be treated as abstract
mathematical objects with no inherent meaning at all. Instead, the objects get
their meaning only from their relationship to each other. Statements like �two
lines intersect in a point�, or �there is only one line that goes through two speci�c
points� say something about how two types of objects, �points� and �lines�, are re-
lated but nothing about what �points� or �lines� really are. This insight lead to the
development of geometry as an axiomatic system and the writing of one of most
in�uential geometry books ever written, Euclid's Elementa. Elementa described
the geometry that are still taught today in high-school, Euclidean geometry.

In Elementa, Euclid developed his geometric theory from �ve postulates. The
last one states that

If a line m intersects two lines k and l such that the sum of the interior

angles on the same side of m is less than two right angles, then the

lines k and l intersect on the side of m in which the sum of the interior

angles is less than two right angles.

(See Figure 1.1.) Apparently, Euclid felt uneasy about this postulate, because
he tried to avoid using it in his proofs. Still, he was not able to derive the �fth
postulate from the �rst four. Over the next thousand years, numerous attempts
to prove the �fth postulate as a theorem were made. It was not until the 19th
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k l

m

Figure 1.1. Euclid's �fth postulate.

century that geometries in which the �fth postulate does not hold were discovered,
and it became apparent that the �fth postulate was indeed independent of the
other four. Two of the new geometries, elliptic and hyperbolic geometry, will be
discussed further in Sections 4.12 and 6.4.

In the late 19th and early 20th centuries, the theory was generalized to higher
dimensions. Coordinates were introduced and algebra became the primary tool
for studying geometry. The theory of geometric transformations and groups was
developed. Felix Klein was the �rst to consider any geometry to be a study
of the properties that are invariant under a group of transformations, and he
classi�ed geometries using invariance as the criterion. For example, the group of
transformations that leaves a speci�c line, the line at in�nity, invariant constitutes
a�ne geometry (see Section 4.12.4). Euclidean transformations were de�ned as
the subgroup of a�ne transformations that preserves a certain distance and angle
measure.

It was then obvious from group theory that all geometries were in fact special
cases of a general geometry, de�ned by the full matrix group of transformations.
This geometry was called projective geometry, and is the most general of all ge-
ometries, or as the great geometer Arthur Cayley put it: �projective geometry is
all geometry�.

One could say that projective geometry is the simplest of all geometries be-
cause it contains no special cases. In Euclidean geometry, for example, two lines
meet in a common point unless they are parallel. In projective geometry, two
lines always have a common point; there are no such things as parallel lines. The
study of projective geometry is valuable because it tells us which geometric facts
are true in general, and which properties are valid only in special geometries.

In this thesis, we will be concerned primarily with projective geometry, but
will also look at Euclidean and non-Euclidean geometry, in particular the notion
of metrics. However, we will restrict ourselves to the geometry of points, lines
and conic sections (i.e., quadratic curves) in the plane.
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1.2 Applications of projective geometry

Projective geometry is an important mathematical tool in many applied sciences,
in particular Computer Graphics and Computer Vision. An important Computer
Graphics problem is rendering, where a photo-realistic image is produced from
the mathematical model of a three-dimensional object. The inverse problem, to
identify a 3D object from a 2D image of it, is a typical Computer Vision prob-
lem. In both cases, it is important to describe algebraically the correspondence
between 3D points in the real world and 2D points in the image. This turns
out to be di�cult in Euclidean geometry because of the perspective involved in
the imaging process. For example, assuming that the imaging process can be
described by a pinhole camera model, two parallel 3D lines will not appear to be
parallel in image. In fact, their 2D line images will intersect in an image point,
called the vanishing point, see Figure 1.2. Since two parallel lines do not intersect
in Euclidean geometry, there is no 3D counterpart to the vanishing point, and
thus, it is not possible to establish a one-to-one correspondence between objects
in the image and objects in the world. One can also say that the e�ect of the
perspective cannot be described in Euclidean geometry since Euclidean transfor-
mations by de�nition preserve parallelism. However, perspective e�ects can be
easily expressed in projective geometry. In that geometry, two coplanar 3D lines
always intersect in point. If the lines happen to be parallel in a Euclidean sense,
they intersect at a point at in�nity, which corresponds to the vanishing point in
the image.

In recent years, there has been a growing interest in identifying and using
image features that are projectively invariant to solve the recognition problem in
Computer Vision. Because such features are not a�ected by the imaging process,
we can expect to �nd them in pictures taken from any angle or distance. From
the discussion above it is clear that parallelism is not an invariant feature, and
consequently, it is no use looking for parallel lines in the picture even if there are
parallel lines (edges or surface marks) in the scene. Distances and angles in the
image also depend on the camera parameters and the position and orientation of
the camera. In contrast, incidence relationships (e.g. that a point is on a line),
tangencies, and cross-ratios (Section 4.3) are projectively invariant. Such features
can be extracted from the image and used directly in the recognition process, for
example as indices into a database of object models.

Because angles and distances are not preserved by the imaging process, there
has been a tendency to disregard metric information altogether in recognition
problems. That is not necessary; metric information is still useful in many situa-
tions. For example, suppose that a robot looks at an object that might be the tire
of a car. The wheel can be described approximately by a circle with the wheel
axis in the center � that is our metric model information. In a perspective image
the wheel will appear elliptic and the axis will not be at the center of that ellipse,
see Figure 1.3. Can the robot use this knowledge to verify that it is looking at
something that could be wheel? Imagine that we draw all diameters of the wheel
in 3D and for each diameter look at the 3D tangents in the two points where the
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l1

l2

p

h

ω

C

Figure 1.2. Two parallel lines l1 and l2 do not intersect in Euclidean three-space, but

their two-dimensional images in the image plane ω do. C is the center of projection, h
is the horizon, and p is the vanishing point.

Figure 1.3. A perspective view of a tire in a vertical plane. The optical axis of the

camera is parallel to the ground plane.



1.3. Dynamic geometry for visualization 5

diameter meets the circle. Each pair of tangents will be parallel in 3D and all
tangents will be in the plane of the circle. The points in which the 2D images of
the tangent line pairs intersect should therefore be collinear if the wheel hypoth-
esis is correct. This is easy for the robot to verify. The intersection points will be
on the horizon of the plane of the wheel. Furthermore, if the plane of the wheel
is perpendicular to the ground plane (a reasonable assumption for a the wheel
of a car), and the optical axis of the camera is parallel to the ground plane, the
horizon of the wheel plane should be perpendicular to the horizon of the ground
plane in the image. That can also easy to check.

In this thesis, we will primarily deal with projective geometry and its theorems,
but because of the growing interest in using metric information in a projective
setting, we will discuss metrics from a projective point of view. Instead of just
introducing the formulas for the distance between two points or the angle between
two lines that are peculiar to a certain type of geometry, we will consider the metric
introduced by a quadratic form in the surrounding projective space. Then, an
angle between two lines can be represented by the cross-ratio of four lines and the
distance between two points can be represented by the cross-ratio of four points
(Section 4.12.3).

1.3 Dynamic geometry for visualization

In this thesis we discuss dynamic geometry software as a tool for geometric visu-
alization. Why are visualization tools at all important in such a well-understood
�eld of mathematics as projective geometry, especially when there exists powerful
algebraic methods that are not limited to problems in two or three dimensions?
Although it is true that the theory of projective geometry is well-developed, the
sheer size of the �eld makes it very di�cult for students and researchers to get an
overview. There is an enormous amount of known facts that has to be grasped;
text books usually only covers the most important theorems, and only occasion-
ally illustrates them with simple sketches. In general, it is not di�cult to follow
an algebraic proof of a theorem. The di�culty is to know what theorems to apply
when dealing with a particular application. That is what visualization techniques,
and in particular dynamic geometry systems are all about: to expose principles
and known facts in a way that can give the user new insights and a better under-
standing of the theory and how to apply it. We argue that in this role, geometric
visualization cannot be replaced by algebraic methods. However, once a phe-
nomenon (e.g. an incidence relation or an invariant) has been discovered through
experimentation and visualization techniques, it is in general a minor problem to
prove it using algebraic methods. Actually, a large class of theorems in projec-
tive geometry can be proven automatically [Kutzler86, Wu86, Richter-Gebert95].
Thus, geometric visualization does not exclude the use of algebraic methods or
vice versa.

To make this discussion more concrete, let us look at an example. The classical
theorem of Pascal states the following: if we select six arbitrary points on a conic
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(a) (b) (c)

Figure 1.4. The theorem of Pascal.

JJ

(a)

JJ

(b)

JJ

(c)

JJ

(d)

Figure 1.5. Pascal's theorem as a dynamic drawing.

(Figure 1.4a), then draw the six lines shown in Figure 1.4b, the three intersection
points shown in Figure 1.4c will then always be collinear. This property is not self-
evident; it requires a proof. Unfortunately, the algebraic proof will not really help
the reader to understand intuitively what is going on and why the theorem is true.
However, if Figure 1.4c had been a dynamic sketch, the reader could have dragged
the points on the conic or changed the shape of the conic and watched what had
happened. Dynamic drawings can only be fully appreciated on a screen, so the
reader is encourage to try this example on a computer. However, the sequence of
snapshots in Figure 1.5 shows the general idea.

A dynamic drawing consists of a limited set of elements such as points, lines
and conics. In contrast to a standard drawing editor, these geometric elements
can be constrained so that, for example, a certain point is always on a certain line
or conic. Compared to compass-and-ruler drawings on paper, dynamic geometry
software o�ers a number of advantages:

• Drawings will be accurate.

• More than one case can be shown.

• Invariant features can be visualized.

• Duality can easily be explored.

• Exploration and experimentation are encouraged.

Let us look more closely at each of these claims.
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Inaccurate, free-hand paper drawings are dangerous, because we easily make
false assumptions when we see them. A classical case is a �theorem� which state
that all triangles are isoceles [King97]. A �proof� of this theorem can convincingly
be derived from an inaccurate drawing, such as the one shown in Figure 1.6.

ABC is a given, arbitrary triangle. Draw l, the angle bisector of A,
and m, the perpendicular bisector of BC. l and m intersect in a point
D. The perpendiculars from D to AB and AC intersect the triangle
at F and G, respectively. Draw BD and CD (see Figure 1.6).

Because of symmetry, ADF ∼= ADG and EDB ∼= EDC. Therefore,
DF = DG and DB = DC. Thus, DFB ∼= DGC and FB = GC.
Since also AF = AG, we have AB = AF + FB = AG + GC = AC.

The problem with Figure 1.6 is that points F and G are not really on the same
side of the base line BC. A series of correct drawings is shown in Figure 1.7.
From these drawings, it is obvious that AF + FB = AG + GC is false and that
the proof is invalid. It has been stated that it is better to make no drawings
at all rather than making inaccurate ones. We agree with that, but argue that
accurate drawings created by software are an invaluable aid when searching for
an algebraic proof.

A

B C

D

E

F
G

l

m

Figure 1.6. An illustration of the �theorem� that all triangles are isoceles.

Making a hand-drawn set of �gures which illustrates various cases of a geomet-
ric con�guration is far too time consuming, especially if the drawing is complicated
and contains curves. Consequently, theorems in geometry text books are either
not illustrated at all, or illustrated with a single sketch. Within reach is now
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A

B C

D

E

F

G

l

m

Figure 1.7. An accurate drawing of the �isoceles� triangle.

the possibility of creating multi-media text books which illustrate theorems with
modi�able sketches and animations. Even when producing paper books, such as
this thesis, a rich set of illustrations can be created with little e�ort using dynamic
software.

Drawings on paper are always static. Since nothing can move is such drawings,
it is not possible to see what does not change � the invariants. Consider the
drawing in Figure 1.8a. P , Q and R are three arbitrary points on a circle. l is
the bisector of PQ and PR. What will happen when point P is moved? From
the static drawing, that is hard to see. In Figure 1.8b, a number of superimposed
snapshots of l are shown. That �gure clearly shows that the intersection point of
l and the circle is invariant1.

For every theorem in 2D which says something about incidences between
points, lines and conics, there is a dual theorem where every �point� has been
replaced by �line� and every �line� has been replaced �point�. Since points and
lines satisfy the same set of incidence axioms (see Sections 4.1 and 4.2). and
since all theorems are ultimately derived from these axioms, any proof about a
point con�guration will also be valid for the corresponding line con�guration. For
example, the dual of Pascal's theorem, often called Brianchon's theorem, is illus-
trated in Figure 1.9. The conic has been inscribed in a hexagon consisting of six

1This can easily be proved. See Section 6.3.1.
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P

Q

R

l

(a) (b)

Figure 1.8. P , Q and R are three arbitrary points on the circle. l bisects the angle QPR.

If P is dragged along the circle, what is invariant?

(a) (b) (c)

Figure 1.9. The theorem of Brianchon.
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arbitrary tangents to the conic. The lines joining opposite vertices will always
intersect in the same point. Although Figure 1.9 illustrates the same theorem as
Figure 1.5, the drawings look very di�erent. Interchanging point and lines are
often called a change of background, and has a great pedagogical value, because
it can make us see beyond a concrete representation of a geometry and better
understand the underlying structure. Dynamic software can automatically create
the dual of any drawing and visualize the correspondence between the elements
in the two drawings.

(a) (b)

Figure 1.10. The theorems of Pappus (a) and of Pascal (b).

When looking at illustrations of theorems, a number of what-if questions often
come to mind. For example, if a conic degenerates into a double line, is Pascal's
theorem still valid? In Figure 1.10a, we have replaced the conic by two lines. The
three intersection points still appear to be collinear. Although the sketch cannot
provide any proof of this, this property is true in general (Pappus' theorem).
We could have forced the conic in Figure 1.5 close to its degenerated shape, as
shown in Figure 1.10b. It then becomes apparent that the theorem of Pappus
is a special case of Pascal's theorem. This example illustrates the usefulness of
dynamic geometry software for exploring and testing conjectures.

1.4 Who will the users be?

In what situations could a dynamic geometry system be useful? What kind of
users do we have in mind, and what kind of problems will they study? In USA
and France, dynamic geometry systems have been used extensively in high-school
geometry teaching, with a focus on classical, two-dimensional Euclidean geome-
try. Some attempts to use these systems at college level have also been reported
[Hamson97].

Dynamic geometry systems can also be used in advanced mathematical re-
search to look for new theorems, and to prove automatically the theorems found
[Richter-Gebert95]. Automatic theorem proving is a research �eld in itself and
beyond the scope of this thesis. However, we shall discuss brie�y the usefulness
of these methods in Section 5.3.4.

We also expect that dynamic geometry systems will be used by researchers
in applied sciences, such as Image Processing, Computer Vision and Robotics.
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A dynamic geometry system makes it possible to simulate real-world situations
with appropriate object and camera models. By operating controls on the screen,
the user can modify all camera parameters, the viewpoint and the position of
the objects. In this role, dynamic geometry systems could turn out to be invalu-
able tools for studying the imaging process. Actually, some groups have already
produced course material based on dynamic geometry intended university level
Computer Vision courses [Backus97].

When constructing the software presented here, we have attempted to provide
more support for advanced geometric constructions than what is generally found
in existing software. In particular, we have been interested in studying non-
Euclidean geometries, metrics de�ned by projective elements (such as absolute
conics), and computations in the complex projective plane. We hope that our
software can be used by researchers in applied sciences and by students in courses
given at university level.

1.5 Special purpose software or general software

packages?

What kind of systems can be used for studying the concepts and theorems of classi-
cal projective geometry in two and three dimensions? Over the last decades, there
has been a tremendous development of visualization tools, ranging from two- and
three-dimensional CAD modelers to systems for symbolic computations and vi-
sualization such as Maple [Monagan98] and Mathematica [Wolfram96]. However,
we will argue that none of these systems are well suited for direct manipulation
of the type of geometric �gures we are interested in.

Three-dimensional CAD systems are capable of showing an object in a per-
spective view from any angle. In order to produce perspective views, compute
occlusions and intersections, CAD systems embody many concepts from projec-
tive geometry, such as homogeneous coordinates and projective transformations.

However, these tools are primarily intended to create objects that are visually
appealing, with smooth corners and surfaces, and not for mathematical studies
of geometry. CAD systems are often oriented towards computations with spline
patches, since splines allow a wide variety of shapes to be created, and at the same
time makes rendering relatively easy. A CAD system has in general no deeper
understanding of the underlying mathematical structure. In particular, there is
usually no explicit representation of simple shapes such as cones or cylinders. A
cylinder is typically made up by a set of surface patches, and if the radius of the
cylinder tends to zero, the system will not realize that the cylinder has collapsed
into a line. If the cylinder is intersected by a plane, a CAD system cannot in
general tell that the intersection curve is a conic which can be represented by a
particularly simple equation. As a consequence, it is not possible to directly use
the features of the conic (such as its axis or its focal points) in other construc-
tions. Many modelers are in fact are inconsistent and allow nonsense objects or
empty sets [Requicha80]. Another problem with using CAD systems for investi-
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gations of geometry is that a Euclidean embedding is often implicitly assumed.
Hence, pure projective geometry, hyperbolic geometry and elliptic geometry must
be simulated in a Euclidean setting. For the same reason, a�ne and projective
distortions may be di�cult to visualize.

Systems like Mathematica, on the other hand, support symbolic computations
and can simplify and solve algebraic equations without resorting to numerical
methods. Mathematica provides a language that is powerful enough to encode
both simple geometric objects (points, lines, conics) as well as more complicated
objects (three-dimensional algebraic curves and surfaces). However, symbolic
computations are orders of magnitude too slow for the kind of interaction we have
in mind. In addition, the user interface plays a central role in all dynamic geometry
software and systems like Mathematica have limited support for implementing
user interfaces.

These considerations have led us, and a few other research groups, to create
special-purpose software which allows classic projective geometry to be studied
interactively. We have tried to �nd an appropriate representation of projective
geometry which makes the geometric knowledge explicit and at the same time al-
lows geometric computations to be performed at high speed. This could be seen as
an attempt to bridge the gap between the relatively slow, symbolic computational
engines and the faster rendering systems which lacks geometric knowledge. In the
next chapter, we will review a number of existing dynamic geometry systems.
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Related work

A number of dynamic geometry systems have been created over the last few
years, and several of them are still being developed. The systems roughly fall
into two categories, which could be called constraint-based and constructive. A
user of a constraint-based system �rst creates a set of objects, such as points,
lines and conics, and then restricts the position of the objects until only one or a
�nite number of geometric con�gurations are possible. Constraint-based systems
usually employ a general constraint programming method to �nd a con�guration
which satis�es all the constraints speci�ed by the user. In a constructive system,
on the other hand, objects and constraints are indivisible. The user can create
objects such as �tangent to a conic� or �midpoint of a segment�, which represent
both a geometric shape (here, a line or a point) and a constraint (here, the line and
the conic must have exactly one point in common, or the distances between the
end-points of the segment and the new point must be equal). Constructive systems
encourage the user to think about sequential ruler-and-compass constructions,
while users of constraint-based systems have to think about speci�cations and
the number of possible solutions. In principle, constraint-based systems are more
powerful and allow for a higher degree of interactivity. However, it turns out that
these systems are also harder to use in many situations and signi�cantly slower
than the constructive ones. It seems that constraint-based systems can in practice
only be used for very simple drawings. The distinction between the two types of
systems will be discussed further in Section 5.1.

The system presented in this thesis (pdb) and three of the systems introduced
below (Cabri II, GSP and Cinderella Café) are all constructive. Cabri II and
GSP are by far the most widely used systems in education. Cinderella Café is not
that well-known but has many interesting features. The constraint-based group is
here represented by three systems, GéoSpécif, UniGéom and Juno-2. While there
is a large number of constraint-programming systems that deal with automatic
layout and CAD, GéoSpécif, UniGéom and Juno-2 have been written speci�cally
for dynamic, projective geometry.
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2.1 Cabri

Cabri [Baulac92, Schumann94] was originally developed by the EIAH team of
Leibniz laboratory and the Institut d'Informatiqe et de Mathematiques Appliquees
in Grenoble (IMAG) under the leadership of Jean-Marie Laborde. The �rst ver-
sion was presented at the 6th International Congress of Mathematical Education
in Budapest 1988. The latest release, Cabri II, is marketed by Texas Instruments,
while research and development continues at IMAG.

Cabri II drawings are made up of points, lines, conics and polygons. Points
can be attached to lines and conics and lines can be restricted to go through one
or two points. Tangency is not a primitive constraint in Cabri II, and tangents
to a conic on a given point must be constructed from other primitives, although
such a construction can be created by a macro. Euclidean angles and distances
can be measured and used in constraints.

The user interface is very good. Most incidence constraints can be de�ned
using drag-and-drop operations, and useful feedback is given in most situations.
However, de�ning metric constraints, in particular constraints on angles, is quite
cumbersome.

The position of objects are represented internally by homogeneous coordinates,
but to the user, Cabri II appears to be heavily biased towards Euclidean geome-
try. For example, a Euclidean metric is implicitly used for measuring angles and
distances, and the same metric is applied in all views (windows) of the drawing.
This approach works only because the coordinate systems of di�erent views are
related by Euclidean isometries. It will not work in a system where each view can
show a general, perspective transformation of the underlying drawing.

2.2 GSP (Geometer's Sketchpad)

GSP (Geometer's Sketchpad) [Jackiw95] originates from the Visual Geometry
Project at Swarthmore College in the mid-80's. The original proposal for GSP
placed the emphasis on solid geometry, but because of limited computational
power available at the time, the system was restricted to planar geometry instead.
GSP is now a commercial product marketed by Key Curriculum Press. However,
research and development of the product is still supported by research grants from
the National Science Foundation. The principal designer of GSP and the leader
of the current development is Nick Jackiw at Key Curriculum Press.

GSP drawings may include points, lines and circles, but not general conics.
Tangents to circles are not primitives, but can be constructed from other elements
by a macro. Measurements and transportation of angles and distances are sup-
ported. GSP is intended for investigations into Euclidean geometry and therefore
has no provisions for general perspective transformations.

The user interface is quite good although it is not as smooth as that of Cabri.
However, GSP has a more advanced macro facility and allows custom tools to be
created.
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2.3 Cinderella Café

The Cinderella Café dynamic geometry system was developed primarily by Jürgen
Richter-Gebert, Technischen Universität Berlin and ETH Zürich, in cooperation
with Henry Crapo and Ulrich Kortenkamp. The �rst version was written for
the NEXT system, but unfortunately, the program was never released and no
documentation was published. The current version has been written entirely in
Java and can therefore be run from any Java-capable web browser on any platform.
A brief description of the system and a demo version is available on the Cinderella
Café home pages [Richter-Gebert98]. A new version of Cinderella Café has been
developed and will available in March 1999. The software and an accompanying
booklet will be distributed by Springer-Verlag [Richter-Gebert99]. However, at
the time of writing, the book and the new version of the program are not yet
available from the publisher. Therefore, what is said here about Cinderella Café
is based on information gathered through experimentation with the 1998 demo
version.

Cinderella Café supports points, lines and conics, but not distance/angle mea-
surements or metric constraints. Tangents to a conic that passes through a given
point can be created, but not the common tangents of two conics. Geometric con-
structions can be dualized automatically, although this feature has not been fully
implemented. A construction can also be displayed simultaneously as a Euclidean
drawing, on a Poincaré disc, and on a sphere.

Cinderella Café has an advanced proof engine which can verify that a property
observed by the user, for example that three points appear to be collinear, is true
in general. The proof is produced by algebraic methods and not by a simple
numerical test.

2.4 GéoSpécif

GéoSpécif [Allen93, Bouhineau95, Allen97] is a constraint-based system which
automatically constructs a drawing from a set of logical constraints. The user
�rst declares a set of geometrical objects, which can be points, lines and segments,
then speci�es how the objects are related. It is possible to specify that a point
must be on a certain line or that two lines must be parallel or perpendicular. The
distance between two points can also be speci�ed, but not the angle between two
lines.

The system, which has been implemented in Prolog, has a limited capability
for solving non-linear equations. The strategy of the system is to solve the linear
parts of the system �rst, then use the result to linearize the non-linear equations
or rewrite the non-linear equations in a simple form which can be solved directly.
Obviously, there are many speci�cations for which this strategy fails, for example
the construction of a regular pentagon or the common tangents of two conics.
However, it is possible, for example, to create the tangent from a given point to
a circle, if the user provides the system with over-speci�cations.
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The system updates the drawing automatically if the user drags one of the
(unconstrained) base points. For constructions involving only linear equations,
the response time is reported to be acceptable. For constructions resulting in
non-linear equations, however, the response time may be several seconds.

2.5 UniGéom

UniGéom [Channac96, Bouhineau96] is another constraint-based geometry pro-
gram written in Prolog. It is similar to GéoSpécif but is slightly more powerful
since it contains circles as primitive elements, and it is possible to specify directly
that a line is tangent to a circle. However, general conics are not supported.
UniGéom uses a strategy similar to that of GéoSpécif for solving non-linear equa-
tions: it solves the linear equations �rst and then simpli�es the non-linear parts.

2.6 Juno-2

Juno-2 [Heydon94] is an experimental, constraint-based drawing editor. A Juno-2
drawing is typically produced in three steps. The user �rst draws an approximate
sketch, and then restricts the position of the drawing primitives by specifying
constraints in a declarative extension language. The editor will then automatically
modify the sketch so that all constraints become satis�ed. If the sketch is under-
constrained, the editor will choose a con�guration that is close to the original,
approximate sketch. Finally, the user may adjust the position of control points
until the result is satisfactory. When a drawing is adjusted, the editor makes sure
that all constraints remain satis�ed.

Juno-2 can handle non-linear constraints, and the set of possible constraints
is not �xed; constraints can be declared using a subset of �rst-order logic. The
resulting set of constraints are solved by a combination of symbolic manipulation
and numerical methods.

Although Juno-2 seems to be intended primarily for graphical design, it has
also been used for illustrating theorems in projective geometry. However, it does
not have the speed and high interactivity that is characteristic of pure dynamic
geometry systems.
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Aims and contributions

The idea of building a dynamic geometry system has been around at our lab since
1985. A simple prototype was completed in 1988 [Naeve89]. Although that system
could only handle points and lines, it e�ectively demonstrated the basic idea.
Other, more specialized systems were also being built at that time, for example
to study the the progression of wave fronts in mirrors [Naeve93, Appelgren94].
Under the supervision of Ambjörn Naeve, the current author began to develop
a more complete, robust and easy-to-use system for exploring plane projective
geometry in 1995. The result of this work, the Projective Drawing Board (pdb),
is presented in this thesis.

pdb has been developed in parallel with, and been inspired by, the work made
by other research groups. New versions of Cabri II and Cinderella Café (see
Chapter 2) have been released since the development of pdb began. Inevitable,
there is some overlap between the systems, and they have many features in com-
mon. However, they were developed with di�erent target groups in mind. Cabri
and GSP were primarily intended for teaching Euclidean geometry at high-school
level. Cinderella Café has a more mathematical �avor, with an emphasis on au-
tomated theorem proving. pdb was intended for teaching geometry at university
level, and for applied research in Computer Graphics and Computer Vision. As
a consequence, the mathematical kernel and the user interface that these systems
o�er di�er signi�cantly.

The contributions of pdb to the family of dynamic geometry systems falls into
three categories:

• the design of the mathematical kernel, where both the expressive power and
the speed of the calculations have been primary concerns,

• the signi�cantly improved user interface, and

• the structured, open-ended and well documented system design.

A more detailed account will be given in the next three sections.
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3.1 Mathematical kernel

We wanted pdb to be based on concepts from projective geometry, with no implicit
assumptions about Euclidean metrics or of a particular embedding in R3. We
argue that metric support should be added on top of the basic projective model,
just as the mathematical theory suggests (Section 5.2.7).

pdb allows angle and distance constraints to be expressed in any metric, and
the resulting sketch can be displayed in any type of view, for example a plain
Cartesian view or a Poincaré disc (Section 4.12.1). Both GSP and Cabri are
heavily biased towards Euclidean geometry, and the users of these systems must
apply various tricks in order to visualize other kinds of geometry [Schumann94].
Cinderella Café is the only existing system that seems to be truly projective.
However, we feel that Cinderella Café does not have the same level of support as
pdb has for studying and modifying di�erent metrics.

None of the other tools presently has enough expressive power to directly
support the construction of several important drawings. For example, only Cin-
derella Café supports tangents to a conic as a geometric primitive, and only in a
limited sense1. In pdb, we wanted support for one-parameter families of tangents
of conics, tangents of conics through a point, and common tangents of two conics
(Section 5.2.1).

The ability to place metric constraints on objects is vital when Euclidean,
hyperbolic and elliptic geometries are studied. It should be easy to transport
angles and distances from one part of a drawing to another. Cabri and GSP
support angle and distance measurements, and a limited set of metric constraints.
Compared to Cabri, however, pdb contributes an improved user interface design
for placing metric constraints on objects, and it also has a richer set of geometric
primitives involving metrics. The currently available version of Cinderella Café
lacks support for measurements and for metric constraints.

In projective geometry, angles and distances have no meaning since they are
not preserved by projective transformations. However, the cross-ratio of points
and lines is invariant under general projective transformations, and constraints
involving cross-ratios are therefore meaningful in all geometries. Surprisingly,
no other tool seems to handle directly constraints involving cross-ratios. This
again demonstrates the implicit assumption of a Euclidean geometry. pdb fully
supports the notion of cross-ratios, and any point or line can be constrained using
cross-ratio relationships.

The tools described in Chapter 2 deal only with the real projective plane,
and have no support for managing complex coordinates. However, some objects
with complex coordinates seem to appear naturally in studies of real projective
geometry. For example, a real line intersects a conic (with a real point set) in
two real points if the line contains an interior point of the conic, see Figure 3.1a.
However, if the line is moved outside the conic, no real intersection points exist
(Figure 3.1b). This is the kind of annoying special cases that are so familiar from

1Tangents to a conic through a point are always drawn as a degenerated conic (a pair of
lines). Also, the tangent points cannot be constructed.
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(a) (b)

Figure 3.1. A line and a conic intersect in two real points only if the line contains an

interior point of the conic.

Euclidean geometry where, for example, two lines intersect in one point, except
when they are parallel. The number of special cases tends to grow exponentially
with the number of objects in a drawing and we cannot a�ord to ignore them;
there will always be some objects in the drawing that become unde�ned and
make the construction collapse. All of this can be avoided if we allow for complex
coordinates. The line in Figure 3.1b actually intersects the conic in two conjugate
complex points, which are incident both with the line and with the conic. pdb is
able to calculate and visualize shapes with complex coordinates when necessary,
although the real solutions are preferred when they are available (Section 5.3.4).
One of the goals with pdb was to enable the user to interact with complex objects.

pdb's ability to directly deal with complex coordinates also allows us to ac-
cess and manipulate what is known as the absolute elements in a geometry. For
example, the Euclidean angle measure can be de�ned in terms of a conjugate
complex point pair, known as the circular points. In elliptic geometry, the metric
is given by a conic, whose point equation has real coe�cients but only complex
roots (Section 4.12.2). This thesis contains several examples which demonstrates
how the absolute elements can be used, see e.g. Sections 5.3.6, 6.3.2, 6.3.3, and
6.4.1.

3.2 User interface

pdb has a drag-and-drop interface for creating drawings which is similar to that
of Cabri. In both systems, constraints are de�ned by dropping objects onto each
other. However, pdb's drag-and-drop interface also allows all incidence constraints
to be removed or rede�ned dynamically. In addition, the drag-and-drop interface
has been extended to handle constraints involving distances, angles, and tangen-
cies.
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pdb tries to capture the intent of the user and to suggest suitable operations
and operands in each given situation. For example, if the user drags a line onto
a conic, pdb suggests that the line should be a tangent to the conic, if that
is geometrically possible. Also, several objects can be created in one operation
(Section 5.3.2). If the user drops a line onto the intersection of two other lines,
pdb �rst creates the intersection point, and then restricts the dropped line to be
incident with that point.

A common weakness in existing tools is the treatment of under-constrained
objects, i.e. objects whose positions are partly but not completely determined by
geometric constraints. Examples are a point that has been restricted to be on
a certain line, and a line that must be tangent to a given conic. When a line is
dragged, free points on that line often drift together, which usually cause a part of
the drawing to collapse. It is just as common that the free points slide away along
the line and disappear from the screen (Section 5.2.3). In pdb, under-constrained
objects always move in a well-de�ned and predictable manner. When the posi-
tion of an under-constrained object needs to be updated, additional geometrical
constraints are automatically added by the system until the new position is com-
pletely determined. The extra constraints depend on the geometric structure of
the drawing, the object being dragged, and the properties of the view in which
the interaction takes place (Section 5.2.6).

Existing tools also have problems with under-constrained objects that can be
placed in one of a �nite number of positions. For example, a line and a conic
intersect in two points. The user will often select one of these points and use it
as a basis for the next step in the construction. Then, if the line or the conic is
moved slightly, the selected intersection point often jumps unpredictably between
the two positions it can occupy. To overcome this problem, pdb uses oriented
projective geometry [Stol�91] in all calculations, which makes it easier for the
system to distinguish multiple roots of a geometric equation. The theory will
be reviewed in Section 4.13 and the identi�cation of roots will be discussed in
Section 5.2.5.

(a)

Point

Point

Point

Point

Point
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(b)

Figure 3.2. A conic on �ve points and one of its tangents.

When working with a complicated drawing it is often necessary to see the
logical structure, i.e., how the objects depend on each other and which constraints
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have been placed on the objects. pdb can display a drawing as a constraint graph
whose nodes represent shapes and whose arcs represent constraints, see Figure 3.2.
It is possible to interact directly with this graph and, for example, add and remove
nodes.

3.3 System design

All of the systems described in Chapter 2 are either commercial or are about to
become commercial. Therefore, the internal data structures, the algorithms and
the source code are unavailable. Very little about design decisions, trade-o�s and
implementation details has been published. One goal of the present work is to
make this information available, in the hope that it can serve as a starting point
for other developers of dynamic geometric software. In Section 5.4 the design of
pdb has been documented in UML, the Uni�ed Modeling Language [Booch99].

The design of pdb is object-oriented with well-de�ned interfaces and object in-
teractions. The system is open-ended: new geometrical primitives and constraints
can be added, and existing interaction strategies may be replaced by new ones
(Section 5.4.6).

Most dynamic geometry systems have some kind of built-in macro language
which allows the user to specify a drawing as a program rather than drawing it
interactively on the screen. Every system with this capability that we have seen
has its own macro language with a non-standard syntax. In pdb, we have taken
another approach and extended a standard interpreted language with geometric
functions. Actually, a very general way of integrating the macro language with
the compiled, strongly-typed implementation language has been developed and is
presented in Appendix A (also in [Winroth98]).

Portability has been another major concern. All system-dependent code, in
particular code relating to the windowing system, has been carefully isolated.
Only standard libraries have been used for creating the internal data structures.

Even though the design of pdb is object-oriented, unnecessary layers and inter-
faces have been removed, and the use of resource-consuming windowing toolkits
have been avoided. This has resulted in a compact and fast system, and we have
been able to keep the response time of the system short, despite the amount
of extra computations necessary to achieve the improvements of user interface
mentioned above.
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Chapter 4

Mathematical background

To make this thesis self-contained, we provide the necessary mathematical back-
ground in this chapter. It may be skipped by readers familiar with plane projec-
tive geometry. However, in subsequent chapters we will frequently refer to the
de�nitions and theorems presented here.

There are two basic approaches to projective geometry. It can be seen as a
logical system based on a set of axioms relating the unde�ned elements �point� and
�line� (synthetic projective geometry), or it can be given an algebraic de�nition
based on the notion of vector spaces (analytic projective geometry). We have
chosen the latter approach since it not only makes the presentation shorter, but
also provides a better framework for geometric computations.

It is our ambition to de�ne clearly every concept we use and to prove (or at
least outline a proof of) every theorem we mention. However, this chapter is not
intended to be used a text book on projective geometry. We will mostly restrict
ourselves to concepts and theorems that are fundamental to the user interface and
implementation of pdb. In addition, a few theorems that will be used in the exam-
ples will also be proved. We will be concerned only with points, lines and conics in
the projective plane, not with the projective spaces of higher dimensions or gen-
eral algebraic curves or surfaces. For a more thorough presentation and a broader
mathematical perspective on the subject, we refer the reader to [Klein25, Klein28,
Salmon60, Winger62, Coxeter93, Coxeter98, Samuel88, Meserve59, Bix98].

We have tried to keep formal derivations to a minimum and to avoid heavy
mathematical machinery. However, since our approach is algebraic the reader is
assumed to be familiar with the basic concepts from linear algebra such as vector
spaces, metrics, determinants, and eigenvalues.

4.1 Point and lines in the projective plane

In elementary Euclidean geometry, a point p is represented by its coordinates
(x, y) in some coordinate system S, i.e., (x, y) is the position of p relative to the
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origin of S. To emphasize that the coordinates depend on the choice of coordinate
system, we sometimes write (x, y)S . However, we can instead say that the pair
of numbers (x, y) itself is the point, and that the set of points in the Euclidean
plane is {(x, y) : x, y ∈ R}. That allows us to speak about the point (x, y) without
referring to any coordinate system.

x

y

z

projective points

Figure 4.1. Projective points as lines in R3.

Analogously, we can identify the points in the real projective plane P2 with
vectors (v1 : v2 : v3) ∈ R3. However, we will consider all vectors (λv1 : λv2 : λv3),
λ ∈ R, to represent the same projective point. In other words, we de�ne a
projective point as a one-dimensional linear subspace of R3. We will often say
�the point (v1 : v2 : v3)� when we mean the projective point that has been
identi�ed with the subspace spanned by (v1 : v2 : v3). The de�nition is illustrated
in Figure 4.1; the projective points are the lines in R3 that go through the origin.
Note that (0 : 0 : 0) does not span a one-dimensional subspace and consequently,
does not represent a projective point.

In P2, projective lines can be de�ned in the same way as points, i.e. as one-
dimensional subspaces1 of R3. Thus, a vector (v1 : v2 : v3) may represent both
a projective point and a projective line. However, we will treat point and line as
two separate entities and talk about �the point (v1 : v2 : v3)� in contrast to �the
line (v1 : v2 : v3)�.

With this concrete de�nition of projective points and lines, projective geome-
try can be based on the theory of real numbers and vector spaces. (However, this
is certainly not the only possible approach.)

In equations involving points, lines and other geometrical entities, we will treat
points and lines as column vectors and write

v =

v1

v2

v3


or, in running text, v = (v1, v2, v3)T .

1The lines could also be de�ned as two-dimensional subspaces. However, since each two-
dimensional subspace of R3 has a unique one-dimensional orthogonal subspace, the de�nitions
are equivalent.
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A point p is on or incident with a line l if

pT l = p1l1 + p2l2 + p3l3 = 0

First we must show that there is exactly one line on two given distinct points p
and q, namely

l = p× q

From the de�nition of the cross-product, it is easy to verify that l = p× q implies
pT l = 0, qT l = 0. To see that l is the only line that contains p and q, consider
the 2 × 3 matrix A = (p, q)T . Since any line m that contains both p and q must
satisfy Am = 0, m must be in the nullspace of A, N(A). The rank of a matrix
plus the dimension of its nullspace equals the number of columns. Since p and q
represent distinct points they are linearly independent and rankA = 2. Therefore,
dim N(A) = 1 which means that N(A) corresponds to a single projective line.

x

y

z

(v1, v2, v3)T

v1
v3

v2
v3

z = 1

Figure 4.2. The correspondence between projective points and Euclidean points.

Three points are said to be collinear if they are on the same line. If p, q and
r are distinct they are collinear exactly when p is on the line q × r, i.e., when
pT (q × r) = 0 or equivalently, ∣∣p q r

∣∣ = 0

The set of points on a line is called a range of points. Similarly, three lines k, l, m
are said to be concurrent if they have a point in common. Again, that happens
exactly when ∣∣k l m

∣∣ = 0

The set of lines on a point is called a pencil of lines.
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From the de�nitions we made earlier, it is clear that a Euclidean point is very
di�erent from a projective point. The former is a vector in R2, the latter a one-
dimensional subspace of R3. However, we can associate a projective point with
each Euclidean point:

(x, y) 7→
x

y
1


That allows us to treat the Euclidean points as a subset of the projective points.
Conversely, v1

v2

v3

 7→ (
v1

v3
,
v2

v3
)

if v3 6= 0. Figure 4.2 shows this relationship geometrically. In R3, the lines through
the origin represent the projective points and the plane z = 1 is identi�ed with
the Euclidean plane. An R3 line with direction (v1, v2, v3)T intersects the plane
z = 1 in (v1/v3, v2/v3). This is called the standard embedding of the Euclidean
plane. It is the simplest but of course not the only way of identifying Euclidean
points with projective ones.

With the standard embedding of the Euclidean plane, a projective point
(v1, v2, 0)T corresponds to an R3 line in the plane z = 0. Since that line does
not intersect the plane z = 1, the projective point has no Euclidean counterpart.
Because the Euclidean point corresponding to (v1, v2, ε)T moves further and fur-
ther away from the Euclidean origin as ε → 0, (v1, v2, 0)T is called a point at

in�nity. However, in the projective plane, (v1, v2, 0)T exists and is no di�erent
from any other point. It is an in�nity point only with respect to the standard
embedding of the Euclidean plane.

A similar relationship can be established between projective and Euclidean
lines. A Euclidean line is de�ned by the equation ax + by + c = 0 where a and b
are not both zero. The equation can be written

(
x y 1

)a
b
c

 = 0

If we interpret this as an incidence in P2, it says that the point (x, y, 1)T is on the
line (a, b, c)T . Thus, (a, b, c)T is the projective counterpart of the given Euclidean
line. Figure 4.3 shows the geometric interpretation of this relationship in R3. π is
a plane through the R3 origin which cuts out a Euclidean line in the plane z = 1.
If (x, y) is a point on the Euclidean line, the R3 vector (x, y, 1)T is in π. Since
(x, y, 1)(a, b, c)T = 0, (a, b, c)T must be the normal of π in R3.

From Figure 4.3 we see that there is only one plane π that does not cut
z = 1, namely the xy-plane whose normal is (0, 0, 1)T . Thus, (0, 0, 1)T is the
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z = 1

Figure 4.3. The correspondence between projective lines and Euclidean lines.

P2

Figure 4.4. Points and lines in the projective plane.
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only projective line that does not have a corresponding Euclidean line. Because
it contains every point at in�nity, it is called the line at in�nity.

From now on, projective points and lines will only occasionally be depicted as
R3 lines and planes; we will almost always draw them as Euclidean points and
lines, as in Figure 4.4.

4.2 Duality

Both projective points and projective lines are represented by vectors in R3. When
the vectors are used in equations, only the context tells us which ones represent
points and which ones represent lines. For example, the equation pT l = 0 can be
interpreted as �the point p is on the line l� or �the point l is on the line p�.

In the previous section, we proved that there is exactly one line that contains
any given pair of points. In that proof we could have replaced every word �point�
with �line� and every �line� with �point� and all equations would still have been
valid. The proof therefore shows that there is exactly one point on two given
lines, or in other words, two lines have exactly one point in common.

In general, for every valid statement about points and lines there is a valid
dual statement where the words �point� and �line� have been interchanged. This
relationship between point and lines (hyperplanes in higher dimensions) is char-
acteristic of projective geometry and is referred to as the principle of duality or
Poncelét-Gergonneduality.

4.3 Projective transformations

A linear, 1-1 transformation T : P2 → P2 which maps triples considered as points
to triples considered as points is called a projective transformation or a projectivity.
T can be represented by a 3× 3 matrix M :

q = Mp

where p and q are vectors representing points. Since T is 1-1, M is non-singular.
Furthermore, M and λM , λ ∈ R, represent the same projective transformation
since Mp and λMp represent the same projective point.

If Section 4.1 we saw that three points p, q and r are collinear if and only if∣∣p q r
∣∣ = 0

Since ∣∣Mp Mq Mr
∣∣ = ∣∣M (

p q r
)∣∣ = |M | · ∣∣p q r

∣∣
T preserves collinearity. Projective transformations are therefore also called
collineations.

It should be noted that M can only be applied to triples representing points.
In order to preserve incidences between points and lines, triples representing lines
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must be transformed with M−T (where −T means invert and transpose). Then,
if p is a point on a line l

(Mp)T (M−T l) = pT MT M−T l = pT l = 0

Suppose we want to determine a transformation M such that it maps a pro-
jective point pi to another point qi, i.e.,

Mpi = λiqi, λi ∈ R (4.1)

How many pairs of corresponding points pi, qi does it take to completely determine
M? Since (4.1) gives us three scalar equations for each i, and since M contains
nine unknown elements, it may look as if three pairs would su�ce. However,
each equation introduces a new unknown λi. Therefore, four pair of points are
required. (The constant in the last equation, λ4, can be set to 1 since M is only
determined up to a scale factor anyway.) Of course, the equations must be linearly
independent, i.e., no three points pi must be collinear. How can M be computed?
Assume �rst that p1 = e1, p2 = e2, p3 = e3 and p4 = u, where

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 , u =

1
1
1

 (4.2)

Then Equation 4.1 for i = 1, 2, 3 can be written

M

1 0 0
0 1 0
0 0 1

 =
(
λ1q1 λ2q2 λ3q3

)
When combining that with Equation 4.1 for i = 4 and λ4 = 1 we get

M

1
1
1

 = λ1q1 + λ2q2 + λ3q3 =
(
q1 q2 q3

)λ1

λ2

λ3

 = q4 (4.3)

Thus, we can �rst calculateλ1

λ2

λ3

 =
(
q1 q2 q3

)−1
q4

and then

M =
(
λ1q1 λ2q2 λ3q3

)
(Since q1, q2, q3 are not collinear, the matrix (q1, q2, q3) has full rank and is
therefore invertible.) Now, if pi, i = 1, 2, 3, 4 are arbitrary points we compute the
projectivity M1 which maps e1, e2, e3, u to p1, p2, p3, p4 and the projectivity M2

which maps e1, e2, e3, u to q1, q2, q3, q4. The required map is then M = M2M
−1
1 .
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By the principle of duality, the projectivity M can also be computed from
four pairs of corresponding lines, no three concurrent. It can also be computed
from three pairs of corresponding points and one pair of corresponding lines,
which is more natural for example in a�ne geometry where one line is �xed,
see Section 4.12.4. (In Equation 4.3, q1, q2, q3 would have to be replaced by the
columns of (q1, q2, q3)−T and λi by 1/λi.)

The fact that a projectivity on P2 is completely determined by four pairs
of corresponding points is also known as the fundamental theorem of projective

geometry.

4.4 Homogeneous coordinates

In Section 4.1, points in P2 were de�ned as one-dimensional linear subspaces
of R3, and these subspaces were represented by the R3 vectors spanning them.
Thus, we could say that the R3 vectors are the projective points. In this section,
we will introduce projective coordinate systems or projective frames for P1 and
P2. A projective frame is a geometric object that can be used as a reference in
order to assign unique numerical coordinates to every projective point. These
coordinates, often called the homogeneous coordinates, will also be vectors in R3.
However, in contrast to the projective points themselves, the coordinate vectors
are meaningful only in combination with a projective frame.

We saw in the previous section that four pairs of corresponding points deter-
mine a projectivity. Therefore, we de�ne a projective frame to be an ordered list
of four points F = p1, p2, p3, p4, no three points collinear. The standard frame is
F0 = e1, e2, e3, u where e1, e2, e3 and u were de�ned in the previous section (Equa-
tion 4.2). Let T be the unique projectivity that maps F to F0. The homogeneous
coordinates of a point p relative to the frame F , denoted [p]F , is then the vector
representing Tp. Since Tp has many representatives, [p]F is only determined up
to a scalar factor. The point p4, which is mapped to u by T , is called the unit

point of the frame F .

If we consider the vectors in F and F0 as lines, we can use the same de�nition
for line coordinates.

4.5 Correlations and polars

A projectivity, or collineation, was de�ned above as a linear, 1-1 linear transfor-
mation mapping triples considered as points to triples considered as points. A
similar mapping from triples considered as points to triples considered as lines is
called a correlation. Just like a collineation, a correlation can be represented by
a non-singular matrix M .

Correlations which satisfy the following constraint are called polarities: if p
and q are two points, p will be on the line Mq if and only if q is on the line Mp,
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i.e.,

∀ p, q ∈ P2 : qT Mp = 0 ⇔ pT Mq = 0

Since qT Mp is a scalar, the left-hand side of the equivalence can be written
(qT Mp)T = pT MT q = 0. Since the equivalence must hold for all points p and
q, M = MT . Thus, polarities are represented by symmetric matrices. The line
l = Mp is called the polar of p, and conversely, p is called the pole of l, with
respect to the polarity M .

4.6 Perspectivities

A projectivity T : P2 → P2 is a perspectivity if

∃ q ∈ P2, ∀ p ∈ P2 :
∣∣q p Tp

∣∣ = 0

If q is a point, it is called the center of perspectivity. The de�nition then says that
any point p and its image must be on a line through the center of perspectivity,
see Figure 4.5a. Dually, if we interpret q as a line, the line p and its image must
be concurrent with q, see Figure 4.5b.

p1 p2

p3

q

Tp1 Tp2

Tp3

(a)

p1

p2

p3q

Tp1

Tp2

Tp3

(b)

Figure 4.5. Perspectivities in the plane.

A projectivity T which leaves three concurrent lines (or three collinear points)
invariant is a perspectivity. To prove that, pick three points p1, p2, p3, one on
each line. They must be di�erent from q and not collinear (Figure 4.5a). Then, if

p3 = λ1p1 + λ2p2 + λ3q, λi ∈ R

we get

Tp3 = λ1Tp1 + λ2Tp2 + λ3q
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Since q, p3 and Tp3 are collinear∣∣q p3 Tp3

∣∣ = ∣∣q (λ1p1 + λ2p2 + λ3q) (λ1Tp1 + λ2Tp2 + λ3q)
∣∣

=
∣∣q λ1p1 λ2Tp2

∣∣+ ∣∣q λ2p2 λ1Tp1

∣∣
= λ1λ2(

∣∣q p1 Tp2

∣∣+ ∣∣q p2 Tp1

∣∣) = 0

Since p3 is not on the same line as p1 or p2, λ1 6= 0, λ2 6= 0. Hence, |q p1 Tp2|+
|q p2 Tp1| = 0. Similarly, for an arbitrary point p in the plane we get∣∣q p Tp

∣∣ = const · (∣∣q p1 Tp2

∣∣+ ∣∣q p2 Tp1

∣∣)
hence ∣∣q p Tp

∣∣ = 0

Conversely, a perspectivity leaves every line on a certain point (here, q) invariant.
That follows immediately from the de�nition of perspectivity.

The perspectivities do not form a subgroup of the full projective group. In
fact, it can be shown that any projectivity can be written as a �nite sequence of
perspectivities.

p1

p2

p3

q

p′1

p′2

p′3

Figure 4.6. Perspective triangles.

If a plane �gure can be mapped onto another by a perspectivity, the two
�gures are said to be perspective. For example, the triangles p1p2p3 and p′1p′2p′3 in
Figure 4.6 are perspective. (The projectivity which maps q, p1, p2, p3 to q, p′1, p

′
2, p

′
3

leaves the lines qp1, qp2 and qp3 invariant and is therefore a perspectivity.)

Interestingly, the two triangles in Figure 4.6 are also perspective from a line
because the intersections of corresponding sides are collinear (Figure 4.7). This
is known as the theorem of Desargues. We will just outline a proof here. Let
p1, p2, p3, q be the standard frame F0. We can then write down the coordinates
of l1, l2, l3 and the coordinates of the sides of the triangle p1p2p3. Since p′i is on
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l1 l2 l3

p1

p2

p3

q
r1

r2

r3p′1

p′2

p′3

Figure 4.7. The theorem of Desargues.

li, lTi p′i = 0. It follows that

p′1 =

p′11
p′12
p′12

 , p′2 =

p′21
p′22
p′21

 , p′3 =

p′31
p′31
p′33


From this, the coordinates of the sides of p′1p

′
2p
′
3 and the intersection points

r1, r2, r3 are easily calculated. Finally, we verify that |r1 r2 r3| = 0, which proves
that r1, r2, r3 are collinear.

4.7 The projective line

We will be concerned primarily with the projective plane, but occasionally we will
also have to work with the one-dimensional projective space P1, often called the

projective line. In analogy with P2, we de�ne the points in P1 as one-dimensional
subspaces of R2. When we talk about the point p = (p1, p2)T , we mean the
projective point that has been identi�ed with the subspace of R2 that is spanned
by (p1, p2)T .

A P1 projectivity is a linear 1-1 mapping T : P1 → P1. It can be represented
by a 2 × 2 non-singular matrix. We can use the same method as in Section 4.3
to compute a projectivity from pairs of corresponding points. However, in P1, a
projectivity is completely determined by three pairs.

Coordinates in P1 are de�ned in the same way as in P2. A frame F in P1

consists of three distinct points p1, p2, p3, where p3 is called the unit point. The
standard frame F0 consists of the points (1, 0)T , (0, 1)T and (1, 1)T . If T is the
projectivity that maps F to F0, the homogeneous coordinates of a point p is
[p]F = Tp.

The points in P1 are often identi�ed with points or lines in P2. Actually, when
we draw P1 as a line on a paper (Figure 4.8a), we have mapped the elements of
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P1

P2

(a)

P1

P2

(b)

Figure 4.8. P1 can be embedded in P2 either as a range of points (a) or as a pencil of

lines (b).

P1 onto collinear points in the plane. Algebraically, this amounts to multiplying
each 2-vector p representing a point in P1 by a 3× 2 matrix A of rank 2:

q = Ap (4.4)

Since rankA = 2, the three vectors Ap1, Ap2 and Ap3 will always be linearly
dependent, and thus represent collinear points in P2. Between P1 and the points
on the P2 line, the mapping A is 1-1. We say that P1 is embedded as a range of

points in P2 by A.
By the principle of duality, we may also interpret Ap as a line. We then say

that P1 has been embedded as a pencil of lines (Figure 4.8b).

Let a1, a2, a′1 and a′2 be four distinct points on a line l in P2. Then both
A = (a1, a2) and A′ = (a′1, a

′
2) will map points in P1 to points on l. Since

a1, a2, a
′
1, a

′
2 are collinear they are linearly dependent and we can write

a′1 = m11a1 + m21a2

a′2 = m12a1 + m22a2

or A′ = AM where

M =
(

m11 m12

m21 m22

)
Because a′1 and a′2 are distinct, |M | 6= 0. Hence, M can be considered as a
projectivity on P1. If u ∈ P1 and v = Mu, we get

A′u = AMu = Av

Thus, a change of embedding corresponds to a projectivity on P1.

Suppose a projectivity T : P2 → P2 maps a line l onto another line m. Then
the correspondence between points on l and points on m can be described by
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a projectivity on P1. To be more speci�c, if A embeds P1 as the line l and B
embeds P1 as the line m,

∃M : P1 → P1, ∀ u ∈ P1 : TAu = BMu

To see that, choose two distinct points p1 and p2 on l. Let A = (p1, p2) and
B = (Tp1, T p2). Then B = T (p1, p2) = TA and ∀u ∈ P1 : TAu = Bu. The choice
of A was arbitrary, but the choice of B was not. However, if B′ is an arbitrary
embedding of m we saw above that B = B′M , for some M ∈ R2×2, |M | 6= 0. For
this M , TAu = B′Mu for every u. Since M is non-singular it is a projectivity on
P1. That completes the proof. Of course, the same applies to correlations on P2.
Then T maps points to lines and B embeds P1 as a pencil of lines.

m

m′

p

p′

q

(a)

l1
l2l3

m

m′

p1 p2

p3

q

p′1

p′2

p′3

(b)

Figure 4.9. Projecting points on a line m onto points on a line m′
.

Figure 4.9a shows a common geometric construction. Let m and m′ be two
�xed lines and q a �xed point. For each point p on m, draw the line from q to
p. This line intersects m′ in p′. How are p and p′ related algebraically? Choose
three distinct lines l1, l2, l3 on q. The line l1 intersects m and m′ in p1 and
p′1, see Figure 4.9b. The line l2 intersects m and m′ in p2 and p′2. Let p3 and
p′3 be two distinct points on l3 not on m or m′. By the fundamental theorem
(Section 4.3) there is a unique projectivity T : P2 → P2 which maps qp1p2p3

to qp′1p
′
2p
′
3. Obviously, T maps m onto m′ and l1, l2, l3 onto themselves. Since

it leaves three lines on q invariant it is a perspectivity, with q as the center.
Consequently, it leaves all lines on q invariant. Thus, T represents the geometric
construction in Figure 4.9a and p′ = Tp in P2 coordinates. We showed above
that the correspondence between points on m and m′ de�ned by a P2 projectivity
T can be represented by a projectivity M : P1 → P1. Thus, in P1 coordinates,
p = Mp′. (The perspectivity T is not completely determined by m, m′ and q.
However, every perspectivity which maps m to m′ and which has q as its center
induces the same projectivity M on P1.)

We can now show that any projectivity M : P1 → P1 can be represented by
no more than three successive perspectivities in P2. Suppose that A embeds P1
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m

m′

p1 p2
p3

q1

q2

r

p′1

p′2
p′3

Figure 4.10. Two successive perspectivities project any three points on a line m onto

any three points on another line m′
, if the lines m and m′

are distinct.

as the line m and A′ embeds P1 as m′, see Figure 4.10. Choose three distinct
points points u1, u2, u3 ∈ P1. Let pi = Aui and p′i = A′Mui. We now construct
a projectivity in P2 which maps pi to p′i. Let q1 be the intersection of p1p

′
1 and

p2p
′
2 and let q2 be the intersection p2p

′
2 and p3p

′
3. p1, p2, p3 can be projected from

q1 to p′1, r, p3 on the line p′1p3. Those points can in turn be projected from q2 onto
p′1, p

′
2, p

′
3. If m and m′ are identical this construction does not work. In that case,

we must �rst project p1, p2, p3 to a di�erent line. We just saw above that these
projections correspond to perspectivities in P2. Thus, there is a P2 projectivity T
consisting of no more than three successive perspectivities which maps p1, p2, p3

onto p′1, p′2, p′3. Since a projectivity on P1 is completely determined by three pairs
of corresponding points, the P1 projectivity induced by T must be M .

4.8 Conics

4.8.1 De�nition

A conic (ellipse, hyperbola or parabola) in the Euclidean plane is de�ned by the
second-order polynomial

ax2 + by2 + 2cxy + 2dx + 2ey + f = 0 (4.5)

In matrix form, this equation can be written

(
x y 1

)a c d
c b e
d e f

x
y
1

 = 0 (4.6)

or

pT Cp = 0 (4.7)

Note that C is symmetric, i.e., CT = C.
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Multiplying p or C by a scalar does not a�ect Equation 4.7. We can therefore
interpret the equation as a constraint on a projective point p. Analogous to
the de�nition of a projective point, we de�ne a projective conic to be a one-

dimensional subspace of R3×3 spanned by a symmetric matrix. If the matrix
is non-singular, the conic is proper, otherwise degenerated (Section 4.8.13). A
projective point that satis�es (4.7) is said to be on the conic C.

4.8.2 The real and imaginary unit circles

The matrix

Cu =

1 0 0
0 1 0
0 0 −1


corresponds to the equation x2 + y2 − 1 = 0, the Euclidean unit circle. The
identity matrix,

E =

1 0 0
0 1 0
0 0 1


corresponds to the equation x2 + y2 + 1 = 0, sometimes called the imaginary unit

circle, which contains no real points.

4.8.3 Tangents and intersecting lines

A line l and a conic C intersect in a point p if p is on both l and C, i.e., if{
pT l = 0
pT Cp = 0

(4.8)

If q1 and q2 are two distinct points on l, every point on l (except q2) can be written

p = q1 + λq2

where λ is a scalar. If p is on the conic, then

pT Cp = qT
2 Cq2λ

2 + 2qT
2 Cq1λ + qT

1 Cq1 = 0 (4.9)

Provided that q2 is not on the conic, qT
2 Cq2 6= 0. (4.9) is then a second-order

equation in λ. Consequently, (4.8) has two roots which means that C and l have
two points in common (not necessarily real or distinct), see Figure 4.11.

If C is proper and p is a double root of (4.8), we say that the line l is a (proper)
tangent to C in p. That happens if and only if

(qT
2 Cq1)2 = (qT

1 Cq1)(qT
2 Cq2) (4.10)
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C

l

Figure 4.11. A line intersects a conic in two points.

q1

q2

Cq1

Figure 4.12. A tangent.

Now, let q1 be a �xed point on C. Then qT
1 Cq1 = 0 and Cq1 can be interpreted

as a line through q1. From (4.10) we see that the line trough q1 and q2 is tangent
to C if and only if qT

2 Cq1 = 0, i.e., if and only if q2 is on the line Cq1. In other
words, if C is proper, the line Cq1 is tangent to C and it is the only tangent
through q1, see Figure 4.12. (This is not true for degenerated conics.)

4.8.4 Line conics

So far we have considered p in Equation 4.7 as a point. When we make that
interpretation, we will call C a point conic. It consists of the points {p : pT Cp =
0}. However, we can equally well interpret (4.7) as a constraint on a projective
line p. In that case, C is a line conic which consists of the lines {l : lT Cl = 0}.

From the dual of the argument above it is clear that for every point q, a line
conic contains two lines (not necessarily real or distinct) that intersect in q, see
Figure 4.13. If C is proper and the system{

pT l = 0
lT Cl = 0

(4.11)

has a double root l, the corresponding point p is called an envelope point of the
line conic C. Furthermore, Cl is the only envelope point on the line l.
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q

Figure 4.13. A line conic has two lines which intersect in any given point q.

Figure 4.14. If C is proper, the line conic C−1
consists of the tangents of the point

conic C.

There is a 1-1 correspondence between proper point conics and proper line
conics. Let p be a point on a point conic C, |C| 6= 0, and l = Cp the tangent
through p. From

pT Cp = pT CC−1Cp = (CT p)T C−1Cp = (Cp)T C−1Cp = lT C−1l = 0

we see that the line conic C−1 consists of the tangents of the point conic C.
Conversely, the point conic C consists of the envelope points of the line conic
C−1, see Figure 4.14. Because of this, we do not always distinguish between
proper point conics and line conics; we just say �the conic C� when we mean the
point conic C or the line conic C−1. However, no such 1-1 correspondence exists
between degenerated conics since C is not invertible if |C| = 0. When referring to
a degenerated conic we must make it clear whether we are treating it as a point
conic or as a line conic.

4.8.5 Conics as polarities

Since a proper conic is represented by a symmetric, non-singular matrix, it can
be considered a polarity (Section 4.5). Thus, the polar of a point p with respect
to a conic C is the line Cp. Equation 4.7 shows that the points on the conic are
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exactly the points that are on their own polars, i.e., the self-polar points. From
the result of Section 4.8.3 it follows that the polar of a point on the conic is the
tangent of the conic in that point.

l
p

q1

q2

Figure 4.15. Pole and polar.

In Figure 4.15, q1 and q2 are two points on a conic C. The tangent through
q1 is also the polar of q1. Since p is on the polar of q1, q1 must be on the polar of
p. The same goes for q2. Thus, the polar of p is the line l between q1 and q2.

4.8.6 Interior and exterior points

A conic with real coe�cients divides the real projective plane into interior and
exterior points. A point is exterior if its polar intersects the conic in two real
points. Otherwise, the point is interior.

4.8.7 Projections of conics

How is a conic a�ected by a projectivity? If the projectivity is represented by a

point transformation matrix M , C is a point conic, p is a point, q = Mp, and
C′ = M−T CM−1, we can write

pT Cp = pT MT M−T CM−1Mp = qT M−T CM−1q = qT C′q (4.12)

Since C is symmetric, C′ is also symmetric and thus represents a conic. C′ is
degenerated only if C is. From Equation 4.12 we see that q is on C′ if and only
if p is on C. Thus, C′ is the projection of the point conic C.

We have just showed that a projectivity maps conics to conics. But given
two conics C and C′, is it always possible to �nd a projectivity that maps C to
C′? A real, non-singular, symmetric matrix C can always be diagonalized by an
orthogonal matrix U (UT U = E):

D = UT CU (4.13)
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where D is diagonal (see e.g. [Leon86] for a proof). Furthermore, if the diagonal
elements of D are d1, d2 and d3, they can be scaled to unit magnitude with

D′ = ST DS (4.14)

where

S =


1√
|d1|

0 0

0 1√
|d2|

0

0 0 1√
|d3|


The elements of D′ can be shifted along the diagonal:

D′′ = V T D′V (4.15)

where

V =

0 1 0
0 0 1
1 0 0


Finally, we can change the sign of all diagonal elements by multiplying D′′ by −1.
Thus, the projectivity ±(USV )−1 maps the conic C either onto the unit circle,

Cu =

1 0 0
0 1 0
0 0 −1


or onto the imaginary unit circle

E =

1 0 0
0 1 0
0 0 1


However, E cannot be projected onto Cu by a real transformation. This is a
consequence of Sylvester's theorem. What sets Cu and E apart is the di�erence
between the number of minus signs and the number of plus signs on the diago-
nal elements. That number can only be changed by a complex projectivity, for
example 1 0 0

0 1 0
0 0 −i


To summarize, if we can �nd real projectivities which map both C1 and C2 onto
Cu or both C1 and C2 onto E, there is a real projectivity which maps C1 to C2.
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4.8.8 Conics in the standard embedding

With the standard embedding, a proper conic with real points in the Euclidean
plane is cut out by a double cone in R3, see Figure 4.16. The tip of the cone is
always at the R3 origin, but the cone is not necessarily circular. If the xy-plane
does not intersect or touch the cone, the corresponding conic in z = 1 will be an
ellipse (Figure 4.16a). If the xy-plane intersects the cone, the corresponding conic
will be a hyperbola (Figure 4.16b). Since the xy-plane represents the projective
line at in�nity, the two R3 lines in which the xy-plane intersects the cone represent
two projective points at in�nity. Thus, projectively, a hyperbola intersects the line
at in�nity in two real points. Figure 4.16c shows the limiting case where the cone
just touches the xy-plane. The corresponding conic is a parabola. Projectively,
the line at in�nity is tangent to every parabola.

By diagonalizing the matrix of the conic with an orthogonal matrix (Equa-
tion 4.13), we rotate the double cone in R3 so that its symmetry axis coincides
with the z-axis. Scaling the diagonal elements to unit magnitude (Equation 4.14)
makes the cone circular. Shifting the elements on the diagonal (Equation 4.15)
turns a hyperbola into an ellipse or vice versa. (Actually, V is orthogonal and
rotates the double cone 90 degrees in R3.)

4.8.9 Determining the coe�cients of a conic

We will often need to determine the conic that goes through certain points or
touches certain lines. What constraints are su�cient to do that? The coe�cient
matrix C of the conic contains nine elements. Since C is only determined up
to a constant factor and since C is symmetric, it contains only �ve independent
elements. Therefore, �ve points on the conic will be su�cient for computing C.
Let

pi =

pi1

pi2

pi3

 , i = 1, . . . , 5

be the coordinates of these �ve points. Using the homogeneous form of Equa-
tion 4.5 we get

ap2
i1 + bp2

i2 + 2cpi1pi2 + 2dpi1pi3 + 2epi2pi3 + fp2
i3 = 0, i = 1, . . . , 5

If we de�ne

A =


p2
11 p2

12 2p11p12 2p11p13 2p12p13 p2
13

p2
21 p2

22 2p21p22 2p21p23 2p22p23 p2
23

p2
31 p2

32 2p31p32 2p31p33 2p32p33 p2
33

p2
41 p2

42 2p41p42 2p41p43 2p42p43 p2
43

p2
51 p2

52 2p51p52 2p51p53 2p52p53 p2
53

 , v =


a
b
c
d
e
f


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x

y

z

z = 1

(a) An ellipse.

x

y

z

z = 1

(b) A hyperbola.

x

y

z

z = 1

(c) A parabola.

Figure 4.16. Conics in the standard embedding.
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these �ve equations can be written

Av = 0 (4.16)

Hence, v must be in the nullspace of A. The nullspace of A is the orthogonal
complement of the row space of A, i.e., N(A) = R(AT )⊥. Assume that the
�ve rows of A are linearly independent. (They will be if the points pi are in
general positions.) The row space will then be �ve-dimensional and since A has
six columns, N(A) will be one-dimensional. This means there is only one conic
on the �ve given points, and that this conic is given by a base vector of N(A). A
vector q = (q1, . . . , q6)T is in the rowspace of A if and only if |B| = 0 where

B =
(

A
q

)
Let Aj , 1 ≤ j ≤ 6 be the determinant of the 5× 5 submatrix of A resulting from
the removal of column j. Since |B| = q1A1 + · · · + q6A6 we see that q is in the
row space of A if and only if q is orthogonal to

n =


A1

A2

A3

A4

A5

A6


Obviously, n spans N(A), and the coe�cients of the conic are given by v = n.
The resulting coe�cient matrix is

C =

A1 A3 A4

A3 A2 A5

A4 A5 A6

 (4.17)

Note that this result holds even if the conic is degenerated because three of the
points are collinear. However, if two of the points are identical, rankA < 5 and
dim N(A) > 1. That means that there is a pencil of conics on the given points,
and Equation 4.17 is not directly applicable.

It is possible to compute C without evaluating all six determinants Aj . How-
ever, Equation 4.17 expresses C as a continuous function of the given �ve points.
This will prove to be important in Section 5.2.5.

By the principle of duality, �ve distinct tangent lines are also su�cient for
determining a conic. A conic is also determined by three points and the tangents
in two of them. Intuitively, a tangency corresponds to a double point. Thus, each
tangent gives us an extra point, and with the three given points, we have the
necessary �ve points. For the same reason, four points and the tangent in one of
them also determine a conic. However, if the given tangents are not on the given
points, there is more than one solution. For example, on four given points there
are two conics which are tangent to an arbitrary line.
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4.8.10 Common points and lines of two conics

Consider the problem of �nding the common points of two distinct conics C1 and
C2. In Figure 4.17, there are four real intersection points. Actually, two conics
always intersect in four points, although the points are not necessarily real and
distinct. For example, two concentric circles intersect in four complex points.

Figure 4.17. Two conics have four points in common.

In order to �nd the points of intersection, we have to solve the following system
of quadratic equations {

pT C1p = 0
pT C2p = 0

where C1 and C2 are real and symmetric. Our strategy is to diagonalize both ma-
trices simultaneously, thereby transforming the system into a particularly simple
form.

First, we project C1 onto the imaginary unit circle E.

V T C1V = E

As explained in Section 4.8.7, V will in general be complex. By substituting
p = V q we obtain {

pT C1p = qT V T C1V q = qT q = 0
pT C2p = qT V T C2V q

The matrix A = V T C2V is complex and satis�es AT = A. It can also be di-
agonalized: WT AW = D, where D is diagonal and WT W = E. With a new
substitution q = Wr, we get{

qT q = rT WT Wr = rT r = 0
qT Aq = rT WT AWr = rT Dr = 0
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If r = (x1, x2, x3)T and di the diagonal element of D, we get{
rT r = x2

1 + x2
2 + x2

3 = 0
rT Dr = d1x

2
1 + d2x

2
2 + d3x

2
3 = 0

This is a system of linear equations in x2
i , whose solution isx2

1

x2
2

x2
3

 =

d2 − d3

d3 − d1

d1 − d2


Hence, 

x1 = ±√d2 − d3

x2 = ±√d3 − d1

x3 = ±√d1 − d2

There are eight di�erent sign combinations, which correspond to eight roots
r1, . . . , r8. However, with suitable indices, we have r1 = −r5, r2 = −r6, r3 = −r7,
and r4 = −r8. Since the roots represent projective points, there are in fact only
four roots, r1, . . . , r4.

4.8.11 Linear combinations of conics

In the previous section we saw that two conics C1 and C2 intersect in four points
p1, p2, p3, p4, not necessarily real or distinct. Any linear combination of C1 and
C2 also contains these points since

pT
i (λ1C1 + λ2C2)pi = λ1p

T
i C1pi + λ2p

T
i C2pi = 0

where λ1 and λ2 are scalar values.
It is also easy to see that any conic which contains p1, p2, p3, p4 can be writ-

ten λ1C1 + λ2C2 for some λ1, λ2. From p1, p2, p3, p4, compute the matrix A in
Equation 4.16. In this case, A will only have four rows. The row space of A
will be four-dimensional, hence dim N(A) = 2. Since C1 and C2 are distinct, the
corresponding vectors v in Equation 4.16 are linearly independent and therefore
they span N(A).

The set {λ1C1 + λ2C2 : λ1, λ2 ∈ R} is called a pencil of conics.

4.8.12 Steiner's theorem

Consider Figure 4.18a. p and q are two arbitrary points on a proper conic C. Let
l be an arbitrary line through p, and r the other intersection point of l and C. Let
m be the line through r and q. We have then associated every line l in the pencil
of lines on p with a line m in the pencil of lines on q. Steiner's theorem states that
the two pencils are related by a projectivity on P1. Let us prove that. Let s be
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C
l

m

p

q

r

(a)

r

p =

0
0
1



q =

1
0
0


s =

0
1
0


u =

1
1
1


(b)

Figure 4.18. Steiner's theorem.

the intersection of the tangents through p and q, and let u be a third, arbitrary
point on C, see Figure 4.18b. Choose a frame in P2 such that q = (1, 0, 0)T ,
s = (0, 1, 0)T , p = (0, 0, 1)T , and u = (1, 1, 1)T . In that frame

C =

0 0 1
0 −2 0
1 0 0


(It is easy to verify that p, q, u is on C and that the tangents of C in p and q inter-
sect in s. Since a conic is completely determined by three of its points and the tan-
gents in two of them (Section 4.8.9), C must represent the conic in Figure 4.18b.)
Furthermore, l and m must have the form l = (l1, l2, 0)T , m = (0, m2, m3)T . Thus,
we can consider P1 as a pencil of lines on p embedded (Section 4.7) byl1

l2
0

 =

1 0
0 1
0 0

(l1
l2

)

but also a pencil of lines on q embedded by 0
m2

m3

 =

0 0
1 0
0 1

(m2

m3

)

If (m2, m3)T = (l1, l2)T , it is readily veri�ed that l ×m is on C, i.e., l ×m = r.
Thus, for this particular choice of embedding, the two line pencils are related by
the identity projectivity on P1. With another embedding, the two pencils would
be related by a general projectivity on P1 (cf Section 4.7).

A consequence of Steiner's theorem is that a projectivity on P2 which leaves a
proper conic invariant and maps three points on the conic onto themselves is the
identity projection E. To see that, consider Figure 4.19. p1, p2, p3 are the three
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l1 l2

l3

l′1 l′2
l′3

p1

p2

p3

q q′

Figure 4.19. A projectivity which leaves a conic and three of its points invariant is the

identity transformation.

invariant points, q is an arbitrary fourth point and q′ = Tp, where T is the P2

projectivity. According to Section 4.7, T determines a P1 projectivity between
the pencil of lines on q and the pencil of lines on q′. On the other hand, Steiner's
theorem states that there is a P1 projectivity M between the two pencils such
that corresponding lines intersect in points on the conic. Since a P1 projectivity
is determined by three pairs of corresponding lines we see that in this case, M is
the projectivity induced by T . Consequently, if p is any point on the conic the
image of the line pq must be a line on q′ which intersects pq in p. Hence, T will
map p onto itself. We now have four invariant, non-collinear points on the conic.
Since four pair of points determine a P2 projectivity, T is the identity mapping.

Another way of formulating this is to say that a P2 projectivity which leaves
a proper conic invariant is completely determined by three pairs of corresponding
points on the conic: if T and T ′ both preserve a conic C and both map three
points p1, p2, p3 on C onto p′1, p

′
2, p

′
3, then T−1T ′ leaves both the conic and the

three points p1, p2, p3 invariant. Hence, T−1T ′ = E and T ′ = T .

4.8.13 Degenerated conics

l1 l2

(a) (b)

l

(c) (d)

Figure 4.20. Degenerated point conics.

Consider the two lines l1 and l2 in Figure 4.20a. The condition that a point p
is on either l1 or l2 can be written

(pT l1)(pT l2) = 0
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p1 p2

(a) (b)

p

(c) (d)

Figure 4.21. Degenerated line conics.

or

pT l1l
T
2 p = 0 (4.18)

Since l1l
T
2 is a 3 × 3 matrix, this looks like the equation of a point conic (cf

Equation 4.7), but l1l
T
2 is not symmetric. However,

C = l1l
T
2 + l2l

T
1

is symmetric. Since pT Cp = pT l1l
T
2 p + pT l2l

T
1 p = 2pT l1l

T
2 p, Equation 4.18 is

equivalent to

pT Cp = 0

Thus, the line pair l1, l2 can be seen as a degenerated point conic. It consists of
the points that is on either l1 or l2, see Figure 4.20b. p ∈ N(C) if

Cp = l1l
T
2 p + l2l

T
1 p = 0 (4.19)

which is a linear combination of l1 and l2. If l1 and l2 represent distinct lines,
the vectors are linearly independent. In that case (4.19) implies that lT2 p = 0 and
lT1 p = 0, which means that p has to be orthogonal to both l1 and l2 in R3. Hence,

dim N(C) = 1 and rankC = 2. On the other hand, if l = (a, b, c)T is a double
line (Figure 4.20c) the corresponding conic is

C = 2llT = 2
(
al bl cl

)
which has rank 1 and consists of the double points shown in Figure 4.20d. Dually,
the two points p1 and p2 in Figure 4.21a de�ne the rank 2 line conic

C = p1p
T
2 + p2p

T
1

shown in Figure 4.21b. The double point p in Figure 4.21c de�nes the rank 1 line
conic shown in Figure 4.21d. To summarize, a rank 2 point conic corresponds to
a line pair, a rank 1 point conic to a double line, a rank 2 line conic to a point
pair, and a rank 1 line conic to a double point.

In Section 4.8.3, we de�ned tangents for proper point conics. The same de�-
nition works for the degenerated case: the (improper) tangents of a degenerated
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point conic are the lines that have 2-contact with the conic. For example, the tan-
gents of the point conic in Figure 4.20b are all the lines through the intersection
point of l1 and l2, i.e., the line conic in Figure 4.21d. It should be noted though,
that there is an in�nite number of rank 2 point conics whose tangents form the
line conic in Figure 4.21d, namely all point conics de�ned by two lines intersecting
in p. Every line is a tangent of the rank 1 point conic in Figure 4.20d. Dually,
the (improper) envelope points of the line conic in Figure 4.21b is the point conic
in Figure 4.20d, provided that l is the line through p1 and p2. Again, there is an
in�nite number of rank 2 line conics whose envelope points form the point conic
in Figure 4.20d.

We saw that N(C) is non-zero for a degenerated point conic. Since Cp may
be zero, it does not necessarily represent a projective line. Therefore, Cp is not
always the tangent line through a point p on C.

4.9 Cross-ratio, harmonic sets and separation

Suppose p1, p2, p3 and p4 are four points in P1, and that

pi =
(

pi1

pi2

)
, i = 1, 2, 3, 4

The cross-ratio of the four points is

(p1 p2 | p3 p4) =

∣∣∣∣p11 p31

p12 p32

∣∣∣∣ · ∣∣∣∣p21 p41

p22 p42

∣∣∣∣∣∣∣∣p21 p31

p22 p32

∣∣∣∣ · ∣∣∣∣p11 p41

p12 p42

∣∣∣∣ (4.20)

Since pi appears as a column of a determinant in both the numerator and de-
nominator, multiplying pi by a scalar has no e�ect on the cross-ratio. Thus, the
cross-ratio is well-de�ned for points in P1. The denominator becomes zero if p2

and p3 coincide or if p1 and p4 coincide. We can handle that either by allowing the
cross-ratio to be in�nite or by treating it as a homogeneous coordinate (c1, c2)T

instead of a quotient c1/c2, where c1 is the numerator and c2 the denominator
in (4.20). In any case, the cross-ratio will be unde�ned if more than two points
coincide.

It follows immediately from the de�nition that

(p3 p4 | p1 p2) = (p1 p2 | p3 p4)

(p2 p1 | p3 p4) = (p1 p2 | p4 p3) =
1

(p1 p2 | p3 p4)
(p1 p3 | p2 p4) = (p4 p2 | p3 p1) = 1− (p1 p2 | p3 p4)
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If M is a 2× 2 non-singular matrix, then

(Mp1 Mp2 |Mp3 Mp4) =

∣∣Mp1 Mp3

∣∣ · ∣∣Mp2 Mp4

∣∣∣∣Mp2 Mp3

∣∣ · ∣∣Mp1 Mp4

∣∣
=

∣∣M (
p1 p3

)∣∣ · ∣∣M (
p2 p4

)∣∣∣∣M (
p2 p3

)∣∣ · ∣∣M (
p1 p4

)∣∣
=

∣∣M ∣∣ · ∣∣p1 p3

∣∣ · ∣∣M ∣∣ · ∣∣p2 p4

∣∣∣∣M ∣∣ · ∣∣p2 p3

∣∣ · ∣∣M ∣∣ · ∣∣p1 p4

∣∣ = (p1 p2 | p3 p4)

Thus, the cross-ratio is invariant under projective transformations. Consequently,
if (pi1, pi2)T in (4.20) is interpreted as homogeneous coordinates in a P1 frame,
the cross-ratio given by (4.20) is independent of the choice of frame. In particular,
if we choose a frame in which the coordinates of p1, p2 and p3 are (1, 0)T , (0, 1)T

and (1, 1)T respectively, the cross-ratio becomes

(p1 p2 | p3 p4) =

∣∣∣∣1 1
0 1

∣∣∣∣ · ∣∣∣∣0 p41

1 p42

∣∣∣∣∣∣∣∣0 1
1 1

∣∣∣∣ · ∣∣∣∣1 p41

0 p42

∣∣∣∣ =
p41

p42
(4.21)

Thus, we can consider the cross-ratio (4.20) as the (non-homogeneous) coordinates
of p4 in a frame in which p1 is the in�nity point, p2 is the origin and p3 is the
unit point, provided that p1, p2 and p3 are distinct.

So far, we have only de�ned the cross-ratio for points in P1. If q1, q2, q3, q4 are
four collinear points in P2, we can �nd an embedding A (Section 4.7) such that
qi = Api, i = 1, 2, 3, 4. We then de�ne (q1 q2 | q3 q4) = (p1 p2 | p3 p4). Since a
di�erent choice of embedding corresponds to a projectivity on P1 and since the
cross-ratio is projectively invariant, (q1 q2 | q3 q4) is well-de�ned.

How can (q1 q2 |q3 q4) be computed in practice? Since q1, q2, q3, q4 are collinear,
we can �nd non-zero scalars λ1, λ2, such that q3 = λ1q1 + λ2q2 (provided that
q1 and q2 are distinct). Choose the embedding A = (λ1q1, λ2q2). Then q1, q2, q3

will correspond to (1, 0)T , (0, 1)T , (1, 1)T in P1. We can easily compute p4 =
(p41, p42)T by solving Ap4 = q4. From Equation 4.21, we immediately get
(q1 q2 | q3 q4) = p41/p42.

In Euclidean geometry, two points de�ne a line segment. However, a projective
line �wraps around� at in�nity. In Figure 4.22a it is possible to go from p1 to p2

in two directions. There is no way of telling which part of the line the segment
p1, p2 represents. However, if we add a third point p3 (Figure 4.22b), we can say
(informally) that the segment p1, p2, p3 is the path from p1 to p2 that does not
contain p3. In Figure 4.22c the cross-ratio (p1 p2 | p3 p4) is shown as a function of
the position of p4. We see that the cross-ratio is negative exactly when p4 is not
on the same segment as p3. We therefore make the following formal de�nitions: p1

and p2 separate p3 and p4 if (p1 p2 |p3 p4) < 0. Since the cross-ratio is projectively
invariant, the point pairs remain separated even if they are projected to new
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p1p2

(a) Projectively, the segment p1p2 is unde�ned.

p1p2 p3

(b) The segment p1p2 can be de�ned as the part that

does not contain p3.

p1p2 p3

−2 − 1
2 0 1

2 1 2 10 100 ∞ −100 −10

(c) (p1 p2 | p3 p4) as a function of the position of p4.

p2 p3 p1 →∞

−1 0 1 2 3 4
(d) The scale is changed when p1 goes to (Euclidean) in�n-

ity. When (p1 p2 | p3 p4) = −1, p4 is the re�ection of p3 in

p2.

Figure 4.22. The concepts of cross-ratio and separation.
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positions on the line. The line segment de�ned by p1, p2, p3 are the points that is
separated from p3 by p1, p2.

When (p1 p2 | p3 p4) = −1, p4 is called the harmonic conjugate of p3 with
respect to p1 and p2, and p1, p2, p3, p4 is called a harmonic set. In Figure 4.22d,
we see that with p1 at (Euclidean) in�nity, the harmonic conjugate of p3 is the
re�ection of p3 in p2.

4.10 Quadrangles and quadrilaterals

Four points p1, p2, p3, p4 in the projective plane, no three of which are collinear,
and the six lines determined by them is called a quadrangle (Figure 4.23a). The
four points are the vertices of the quadrangle and the six lines are its sides. Two
sides are opposite if they do not share a vertex. Opposite sides intersect in the
diagonal points. Since there are six sides, there are three pairs of opposite sides,
and thus three diagonal points. These are called q1, q2, q3 in Figure 4.23b. The
triangle q1q2q3 is called the diagonal triangle of the quadrangle. The sides of this
triangle are m1, m2, m3.

p1
p2

p3

p4

(a)

m1

m2

m3

p1
p2

p3

p4

q1

q2

q3

r1

r2

r3

r4

(b)

Figure 4.23. A quadrangle.

Each side of the diagonal triangle intersects the sides of the quadrangle in four
points: two diagonal points and two other points. In Figure 4.23b, m1 intersects
the quadrangle in r1, r3, q1, q3 and m2 intersects the quadrangle in r2, r4, q1, q2.
From q2, r1r3q1q3 can be projected either onto p1p2r2q3 or p4p3r4q3. From q1,
p1p2r2q3 can also be projected onto p3p4r4q3. Since these projections leave the
cross-ratio invariant,

(r1 r3 | q1 q3) = (p1 p2 | r2 q3) = (p4 p3 | r4 q3) = (p3 p4 | r4 q3)

=
1

(p4 p3 | r4 q3)
=

1
(r1 r3 | q1 q3)

(4.22)
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Thus, (r1 r3 | q1 q3)2 = 1. Since the points are distinct, the cross-ratio cannot be
1. Therefore

(r1 r3 | q1 q3) = −1 (4.23)

In other words, the diagonal points are harmonic conjugates with respect to the
quadrangle.

l1 l2

l3

l4

(a)

l1 l2

l3

l4m1

m2

m3

q1

q2

q3

s1

s2

(b)

Figure 4.24. A quadrilateral.

The dual of a quadrangle is a quadrilateral. It consists of four sides, no three
concurrent, and the six vertices where the sides intersect (Figure 4.24a). Two
vertices are opposite if they have no side in common. The three lines m1, m2, m3

which join opposite vertices in are the diagonals of the quadrilateral. They form
the diagonal triangle whose vertices are q1, q2, q3 (Figure 4.24b).

There are four lines from each vertex of the diagonal triangle to vertices of the
quadrilateral. From q1 in Figure 4.24b, the lines are s1, s2, m1, m2. The dual of
the argument above shows that

(s1 s2 |m1 m2) = −1

Figure 4.25a shows a point p and its polar (Section 4.5 and 4.8.5) with respect
to a proper conic C. q is an arbitrary point on the polar and m is the line through
p and q. If we assume that neither p nor q is on the conic, the points where m
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C

m

p

q

p + λ0q

p− λ0q

(a)

C
l

m

l + λ0m

l − λ0m

(b)

Figure 4.25. Harmonic points and lines with respect to the conic.

intersects the conic can then be written p + λq, λ ∈ R. If we insert that into
Equation 4.7, we get

(p + λq)T C(p + λq) = qT Cqλ2 + 2qT Cpλ + pT Cp = 0

Since Cp is the polar of p, qT Cp = 0. Thus, the two roots of the equation can
be written λ = ±λ0 and the corresponding intersection points are p + λ0q and
p− λ0q. Since p, q, p + λ0q and p− λ0q are collinear, they can be mapped to P1

(Section 4.7). By inserting the P1 coordinates into Equation 4.20 we obtain

(p q | (p + λ0q) (p− λ0q)) = −1 (4.24)

Thus, every point on the polar of p is a harmonic conjugate of p with respect to
the conic. Dually, every line m on the pole of a line l is a harmonic conjugate of
l with respect to the conic, see Figure 4.25b.

In Figure 4.26a, a conic has been drawn through the four vertices of the
quadrangle from Figure 4.23. From (4.22) and (4.23) we have (p1 p2 | r2 q3) =
(p4 p3 | r4 q3) = −1. Combining that with (4.24), we see that both r2 and r4 must
be on the polar of q3 and therefore, m2 is the polar of q3 with respect to the conic
C. Similarly, m1 must be the polar of q2, and since q1 is on the polars of both
q2 and q3, it must be the pole of m3. The triangle q1q2q3 is therefore self-polar
with respect to the conic. The argument is valid for any conic on p1, p2, p3, p4.
Thus, we have showed that the diagonal triangle of a quadrangle is self-polar with
respect to the pencil of conics determined by the four vertices of the quadrangle
(Figure 4.26b). Dually, the diagonal triangle of a quadrilateral is self-polar with
respect to any conic touching the four sides of the quadrilateral (Figure 4.27).

Returning to Figure 4.26a, consider the tangents t1, t2, t3, t4 through the ver-
tices p1, p2, p3, p4 of the quadrangle. Let u1, u2, u3, u4, u5, u6 be the six vertices of
the quadrilateral de�ned by t1, t2, t3, t4, see Figure 4.28. Obviously, the line p1p4
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Figure 4.26. A self-polar triangle.

l1 l2 l3

l4

q1

q2

q3

Figure 4.27. The diagonal triangle q1q2q3 is self-polar with respect to the quadrilateral

l1l2l3l4.
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u4

u5
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Figure 4.28. A quadrilateral and a quadrangle with the same self-polar diagonal triangle.

is the polar of u1 and the line p2p3 is the polar of u4. Since q2 is on both these
lines, it must be pole of u1u4. But we saw above that q1q3 is the polar of q2. Thus,
u1u4 and q1q3 is the same line. Similarly, u2u5 is the same line as q1q2 and u3u6

the same line as q2q3. But u1u4, u2u5, u3u6 are the diagonals of the quadrilat-
eral t1, t2, t3, t4, and q1, q2, q3 the diagonal points of the quadrangle p1, p2, p3, p4.
Hence, the quadrilateral and the quadrangle have the same (self-polar) diagonal
triangle.

Furthermore, if we consider u1, u2, u4, u5 as the vertices of a quadrangle, we
already know that the intersection of u1u4 and u2u5 is the pole of u3u6 with

respect to the conic through u1, u2, u4, u5. But we have just seen that u1u4 and
u2u5 intersect in q1 and that u3u6 is the same line as q2q3. Thus, q1 is the pole
of q2q3 both with respect to the pencil of conics through p1, p2, p3, p4 and with
respect to the pencil of conics through u1, u2, u4, u5.
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4.11 Metrics

A metric in P2 speci�es how the angle between two lines or the distance between
two points is measured. From angles and distances, other metric concepts can be
derived, such as area, midpoints and angle bisectors. None of these concepts are
meaningful if it is not clear what metric we are referring to.

Metrics can be de�ned in several ways. We will follow [Klein28, Winger62]
and de�ne a metric in terms of its absolute elements, since that de�nition is
geometrically intuitive and clearly shows the relationship between di�erent metric
geometries.

4.11.1 Measuring distances and angles

The absolute elements associated with a metric are a (possibly degenerated) point
conic Ω for measuring distances and a (possibly degenerated) line conic Ψ for
measuring angles. If Ω and Ψ are proper they should be related by Ψ = Ω−1 (cf
Section 4.8.4). In that case, Ψ consists of the tangents of Ω (Figure 4.14, page 39).
If rankΩ = 2, Ψ consists of the (improper) tangents of Ω (Section 4.8.13). Du-
ally, if rankΨ = 2, Ω consists of the envelope points of Ψ. When Ω and Ψ are
proper, they carry the same information and we can talk about the absolute conic.
However, it is important to make the distinction between point and line conics if
they are degenerated. For example, an absolute point conic of rank 1 does not
uniquely determine the line conic we need for measuring angles.

The points on Ω are called ideal points, and the lines of Ψ (which are also
tangents of Ω) are called ideal lines.

l

Ω

p

q

s

t

Figure 4.29. Measuring the distance between p and q.

Figure 4.29 shows two points p and q on a line l. s and t are the ideal points
on l. We de�ne the distance between p and q as

dist pq = k1 ln (s t | p q) (4.25)
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where k1 is a constant we choose. If the cross-ratio is complex, ln represents the
complex logarithm: ln z = ln |z|+i arg z. arg z is only determined up to a multiple
of 2π. In (4.25), we use the principal value 0 ≤ arg z < 2π.

If the points p and q are real, so is the line l. If the conic has real coe�cients,
the ideal points s and t will then either be real, in which case the distance measure
is called hyperbolic, or conjugate complex, in which case the distance measure is
called elliptic. When the distance measure is elliptic, we see from Equation 4.20
that since t = s and p, q are real

|(s t | p q)| = | r1e
ϕ1 · r2e

ϕ2

r1e−ϕ1 · r2e−ϕ2
| = 1

and therefore

dist pq = k1 ln (s t | p q) = k1(ln 1 + i arg (s t | p q)) = k1i arg (s t | p q)

Thus, elliptic distances are bounded. On the other hand, if the distance measure
is hyperbolic, s and t are real, |(s t | p q)| 6= 1 and distances are unbounded.

l

m
p

Ψ

u
v

Figure 4.30. Measuring the angle between l and m.

Angles are given the dual de�nition, as shown in Figure 4.30. If l and m are
two lines intersecting in a point p not on the envelope of Ψ, and u and v are the
ideal lines through p, we de�ne the angle between l and m as

ang lm = k2 ln (u v | l m) (4.26)

Again, k2 is a constant we choose. The angle measure is called hyperbolic or
elliptic depending on whether u and v are real or conjugate complex. Elliptic
angles are bounded, hyperbolic angles unbounded.

Note that it is not meaningful to classify the distance between two points as
elliptic or hyperbolic unless the two points are real. Similarly, when we talk about
elliptic and hyperbolic angles, we assume that the two lines are real. Furthermore,
the coe�cient matrix of Ω must be real, although Ω does not necessarily contain
any real points.
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4.11.2 Degenerated geometries

The distance measure (4.25) works �ne even if Ω degenerates into a line pair (a
rank 2 conic), see Figure 4.31. However, if Ω degenerates to a double line (a rank
1 conic), the situation gets more complicated. In this case, s and t become a
double point as shown in Figure 4.32. If k1 is �nite in Equation 4.25, dist pq ≡ 0
since ln (t t | p q) = ln 1 = 0 for all points p and q. Thus, with a �nite k1 the
distance measure de�ned by Equation 4.25 will not be meaningful. Nevertheless,
(4.25) can still be used if we let k1 depend on the shape of the absolute conic as
it degenerates. To see that, choose a frame in which

Ω =

ε 0 0
0 ε 0
0 0 −1

 , p =

p1

p2

p3

 , q =

q1

q2

q3


Provided that q is not on Ω, the ideal points can be written p + λq, where λ ∈ R
is such that

(p + λq)T Ω(p + λq) = qT Ωqλ2 + 2pT Ωqλ + pT Ωp = 0

With Ωpq = pT Ωq and ∆pq = Ω2
pq − ΩppΩqq we get

λ =
−Ωpq ±

√
∆pq

Ωqq

Let λ1 and λ2 be the two roots. Choose an embedding of P1 (Section 4.7) such
that (0, 1)T 7→ p and (1, 0)T 7→ q. Then it is easily seen that

((p + λ1q) (p + λ2q) | p q) =
λ1

λ2
=
−Ωpq +

√
∆pq

−Ωpq −
√

∆pq

= 1 +
2
√

∆pq

−Ωpq −
√

∆pq

This is known as Cayley-Klein's distance formula. If we expand the discriminant
∆pq it turns out that the terms not containing ε are cancelled out:

∆pq = (εp1q1 + εp2q2 − p3q3)2 − (εp2
1 + εp2

2 − p2
3)(εq

2
1 + εq2

2 − q2
3)

= (p2
1q

2
3 + p2

3q
2
1 − 2p1q3p3q1 + p2

2q
2
3 + p2

3q
2
2 − 2p2q3p3q2)ε + O(ε2)

= ((p1q3 − p3q1)2 + (p2q3 − p3q2)2)ε + O(ε2)

Thus,
√

∆pq = O(
√

ε) → 0 and −Ωpq −
√

∆pq → p3q3 as ε → 0. If p3q3 6= 0, the
Taylor expansion of the distance measure is

dist pq = k1 ln (1 +
2
√

∆pq

−Ωpq −
√

∆pq

) = k1

(
2
√

∆pq

−Ωpq −
√

∆pq

+ O(ε)

)
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If we want this to converge to something other than zero, we must choose k1 =
k′1/

√
ε, where k′1 is a �xed and �nite constant. Then

dist pq =
k′1√
ε
· 2

√
∆pq

−Ωpq −
√

∆pq

+ O(
√

ε)

→ 2k′1

√
(p1q3 − p3q1)2 + (p2q3 − p3q2)2

p3q3
= 2k′1

√
(
p1

p3
− q1

q3
)2 + (

p2

p3
− q2

q3
)2

But (p1/p3, p2/p3) and (q1/q3, q2/q3) are the Euclidean coordinates of p and q
with the standard embedding of the Euclidean plane. Thus, dist pq is the usual
Euclidean distance where the constant k′1 determines the unit length. The as-
sumption p3q3 6= 0 which we made above means that p and q must not be on the
Euclidean line at in�nity if we want to measure the distance between them.

Ω
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Figure 4.31. The absolute point conic degenerates to a line pair (rank 2).
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Ω
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Ω

pq
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Figure 4.32. The absolute point conic degenerates to double line (rank 1).

This distance measure, which resulted from the collapse of Ω, is called parabolic.
It is the limiting case between the hyperbolic (ε > 0) and elliptic (ε < 0) distance
measures. Thus, distances in the Euclidean plane are parabolic.
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The absolute line conic Ψ can collapse in a similar way, which would result
in a parabolic angle measure. Since there are three types of distances measures
and three types of angle measures, there are nine possible combinations. By tra-
dition, however, one usually assumes that the angle is bounded, i.e., that the
angle measure is elliptic. The three remaining combinations are studied in hyper-

bolic geometry, elliptic geometry and parabolic geometry (or Euclidean geometry).
Thus, the name of a geometry speci�es the type of distance measure used.

4.11.3 Parallel and perpendicular lines

Two lines are parallel if they intersect in a point on Ω. In Figure 4.33a l is parallel
to both m1 and m2. If Ω is proper or of rank 2, l usually intersects Ω in two
distinct points. Therefore, l ‖ m1, l ‖ m2 does not imply m1 ‖ m2. However,
in Euclidean geometry, Ω is a double line (the line at in�nity), and parallelism is
transitive (Figure 4.33b).

l

m1 m2

Ω

(a)

l

m1 m2

Ω

(b)

Figure 4.33. Parallel lines in a non-degenerated geometry (a), and in Euclidean geometry

(b).

Two lines are perpendicular (or orthogonal) if they are harmonic conjugates
with respect to the absolute conic. To be more speci�c, if l and m intersect in a
point p and u, v are the ideal lines through p,

l⊥m ⇔ (u v | l m) = −1

(Note that perpendicularity and parallelism are not dual properties.)
In Section 4.9 we saw that the pencil of lines on the pole of a given line l

with respect to a conic C are the harmonic conjugates of l with respect to C.
Thus, if Ω is proper, all lines which are perpendicular to l intersect in the pole
of l with respect to Ω. A consequence of this is that two lines always have a
common perpendicular, namely the line through their absolute polars. If the
lines are parallel, their common perpendicular is tangent to Ω at their point of
intersection. Note that this will not be true if Ω is degenerated. In Euclidean
geometry for example, two intersecting lines have no common perpendicular, and
two parallel lines have an in�nite number of perpendiculars.
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The constant k2 in Equation 4.26 is usually chosen so that the angle between
perpendicular lines are π/2. Using Equation 4.26 we get

k2 ln (−1) = k2iπ =
π

2
⇒ k2 =

1
2i

4.11.4 Circles

A circle is usually thought of as a Euclidean concept. However, we can de�ne a
circle C as the locus of a point with constant distance r (the radius) to a �xed
point c (the center).

{p : dist pc = r}

It can be shown that C is a conic which has double contact with Ω [Winger62].
Furthermore, if q1 and q2 are the two points of contact, the chord q1q2 is the polar
of c with respect to Ω. Dually, the envelope of lines with a certain angle to a �xed
line is the line conic which has double contact with Ψ.

4.11.5 Isometries

An isometry is a projectivity that does not a�ect distances or angles. Thus, M is
an isometry if dist(Mp, Mq) = dist(p, q) and ang(M−T l, M−T m) = ang(l, m) for
all points p, q and all lines l, m. If Ω is proper, the isometries are the projectivities
that map Ω onto itself. That follows immediately from the de�nition of distances
and angles and the fact that the cross-ratio is projectively invariant. It is also
apparent that the isometries form a subgroup of the full matrix group. However, it
is not so easy to characterize the isometries when the absolute conic is degenerated.
A parabolic measure is determined not only by the absolute conic but also by the
limiting process which degenerated it. See Section 4.12.3 for a characterization of
Euclidean isometries.

4.12 Special geometries

4.12.1 Hyperbolic geometry

In hyperbolic geometry, the distance measure is by de�nition hyperbolic and the
angle measure elliptic. Thus, each line must contain two real and distinct ideal
points, and on each point there must be two conjugate complex ideal lines.

For any line to contain real and distinct ideal points, the absolute point conic
Ω must be proper and contain an in�nite number of real points. Such a conic
divides the real projective plane into interior and exterior points (Section 4.8.6).
In hyperbolic geometry one usually considers only the interior points of Ω since
only those points are incident on two conjugate complex ideal lines. To emphasize
that, the interior points are called ordinary and the exterior ones ultraideal in
hyperbolic geometry. Ordinary lines are the ones containing an ordinary point.
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Other lines are either ideal or ultraideal. Since every ordinary line contains two
real ideal points, the distance between two ordinary points will be hyperbolic, as
required. If we want the distance measure to be real, we must choose a real value
for k1 since the cross-ratio in Equation 4.25 will be real.

Strictly speaking, the hyperbolic plane consists solely of the ordinary points
and lines. Just as the line at in�nity is not part of the Euclidean plane, the ideal
and ultraideal points and lines are not part of the hyperbolic plane. Therefore,
two lines in the projective plane that intersect in an ideal or ultraideal point
(with respect to Ω) do not really intersect at all in the hyperbolic plane. If we
want to make a concept such as parallelism intrinsic to hyperbolic geometry, we
cannot de�ne parallel lines as lines intersecting in an ideal point (as we did in
Section 4.11). Instead, we can choose the following de�nition, analogous to the
de�nition of parallel lines in Euclidean geometry: The lines through a given point
p either intersect or do not intersect a given line l. Two lines in the pencil of
lines on p will separate the intersectors from the non-intersectors. They are the
parallels of l through p. Needless to say, such de�nitions are very cumbersome.
Therefore, we will always treat the hyperbolic plane as embedded in P2. That
will allow us to use ideal and ultraideal elements in our de�nitions. However, it
is important to realize that the distance measure is guaranteed to be hyperbolic
and the angle measure is guaranteed to be elliptic only for ordinary points and
lines. The distance between two real ultraideal points may not even be real.

Ω

l1

l2

p

Figure 4.34. Two lines and a point drawn on a Poincaré disc.

A common way of visualizing the hyperbolic plane is to draw Ω as a circle
and the ordinary lines as circles perpendicular to Ω, see Figure 4.34. Such a
representation is called a Poincaré disc and can be constructed in R3 as shown
in Figure 4.35 [Klein28]. We assume here that Ω is the unit circle2 Let p be an

2If it is not, we will �rst have to �nd a projectivity which maps Ω to the unit circle and apply
that to every point in the plane.
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x

y

z

z = 1

z = 2

pq

l

O

Ω

Figure 4.35. Mapping points in the projective plane onto the Poincaré disc.

Ω

l1

l2

Figure 4.36. The Euclidean angle between the arcs on the disc equals the actual angle

(de�ned by Ω) between the lines.
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ordinary point in the hyperbolic plane, i.e. an interior point of Ω. Project p
vertically onto the upper half of a sphere of radius 1 centered at z = 1. Then
project that point back onto the plane z = 1 from O, which is the south pole of the
sphere. Obviously, Ω will be mapped onto itself. The points of a projective line
l will be mapped onto a circle segment in z = 1, and that segment will intersects
Ω orthogonally. Furthermore, the angle (as de�ned by Equation 4.26) between
two ordinary, intersecting lines in the hyperbolic plane will be the same as the
Euclidean angle between the circular arcs which represent them on the Poincaré
disc (Figure 4.36).

Ω

Figure 4.37. The hyperbolic angle sum of a triangle is less than π.

The Poincaré disc makes it easier to understand some aspects of hyperbolic
geometry that has to do with angles. For example, it is obvious from Figure 4.37
that the sum of the interior angles of a triangle is less than π. In fact, as the three
vertices approaches Ω, the sum of the angles approaches zero.

4.12.2 Elliptic geometry

In elliptic geometry, both the distance measure and the angle measure are elliptic.
The absolute point conic is proper but contains no real points. Every (real) line
contains two conjugate complex ideal points and every point is on two conjugate
complex ideal lines. Thus, the elliptic and projective planes contain the same
points and lines. There is no distinction between ordinary and ultraideal points
and lines as in hyperbolic geometry. The constant k1 in Equation 4.25 is usually
chosen to be imaginary so that the distance between two real points will be real.
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4.12.3 Euclidean geometry

In Euclidean geometry, the absolute line conic is

Ψ =

1 0 0
0 1 0
0 0 0


which has rank 2. If l = (l1, l2, l3)T is a line on Ψ, l21 + l22 = 0. There is only one
real line that satis�es this condition, namely (0, 0, 1)T which is the Euclidean line
at in�nity (Section 4.1). However, there is an in�nite number of complex lines on
Ψ. In fact, Ψ consists of all lines that are on either I = (1, i, 0)T or J = (1,−i, 0)T

since

IJT + JIT = 2Ψ

(cf Section 4.8.13). A real point p = (p1, p2, p3)T is on the ideal, conjugate
complex lines u = p× I and v = p×J . Thus, the angle measure is elliptic. p is an
(improper) envelope point of Ψ only if u = v. That happens when p is on u× v,
i.e., when p3 = 0. Hence, the envelope points of Ψ are exactly the points on

Ω =

0 0 0
0 0 0
0 0 1


We saw in Section 4.11 that this absolute point conic through a limiting process
gave rise to the usual Euclidean distance measure. We must now verify that
Equation 4.26 actually represents the usual Euclidean angle, for the choice of Ψ
above. Suppose l and m are two lines through the origin. Let the angles between
the lines and the x-axis be α and β respectively (Figure 4.38). The line equations
in Euclidean coordinates are y = x tan α and y = x tan β. The ideal lines through
the origin are u = (−i, 1, 0)T and v = (i, 1, 0)T . These four lines intersect the line
x = 1 in four points:

p =

 1
tan α

1

 , q =

 1
tanβ

1

 , s =

1
i
1

 , t =

 1
−i
1


With the embedding

A =

1 0
0 1
1 0


these points correspond to(

1
tan α

)
,

(
1

tan β

)
,

(
1
i

)
,

(
1
−i

)
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Thus

(u v | l m) = (s t | p q) =

∣∣∣∣1 1
i tan α

∣∣∣∣ · ∣∣∣∣ 1 1
−i tanβ

∣∣∣∣∣∣∣∣1 1
i tan β

∣∣∣∣ · ∣∣∣∣ 1 1
−i tanα

∣∣∣∣ =
(tan α− i)(tan β + i)
(tan β − i)(tan α + i)

=
(cosα + i sinα)(cos β − i sinβ)
(cosβ + i sinβ)(cos α− i sinα)

=
eiαe−iβ

eiβe−iα
= e2i(α−β)

This is known as Laguerre's angle formula. Equation 4.26 then gives us (with
k2 = 1/2i)

ang lm =
1
2i

ln e2i(α−β) = α− β

If l and m instead intersect in (a, b, 1)T , we �rst apply the projectivity

T =

1 0 −a
0 1 −b
0 0 1


T is called a translation since

T

x
y
1

 =

x− a
y − b

1


It is easy to verify that T maps Ψ onto itself: TΨT T = Ψ. Since T a�ects neither
the usual Euclidean angle nor the angle measure (4.26), ang lm = α− β for lines
intersecting in an arbitrary point.

We just saw that angles are invariant under translations. Actually, a transla-
tion is a Euclidean isometry since it also preserves distances. If p = (p1, p2, 1)T

and q = (q1, q2, 1)T

dist(Tp, T q) =
√

(p1 − a− (q1 − a))2 + (p2 − b− (q2 − b))2

=
√

(p1 − q1)2 + (p2 − q2)2 = dist(p, q)

It is also easy to verify that the projectivity

R =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


which represents a rotation by θ around the origin is an isometry. A combination
of translations and rotations is called a rigid motion. The projectivity

M =

−1 0 0
0 1 0
0 0 1


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x

y

x = 1

p = (1, tan α, 1)T

q = (1, tan β, 1)T

s = (1, i, 1)T

t = (1,−i, 1)T

l : y = x tan α

m : y = x tan β

u

v

α
β

Figure 4.38. Verifying that I and J de�nes Euclidean angles.

is called a re�ection since it maps (x, y, 1)T to (−x, y, 1)T . Since M swaps I and
J , and since (u v | l m) = 1/(v u | l m) and ln (1/c) = − ln c, it follows that M
reverses all angles. However, provided that we are not considering directed angles
and distances, M is an isometry. Translations, rotations and re�ections together
form the largest subgroup of isometries in Euclidean geometry.

The projectivity

S =

s 0 0
0 s 0
0 0 1


where |s| 6= 1 scales a geometric �gure. Since SΨST = s2Ψ, S preserves angles.
However, S is not an isometry since distances obviously are a�ected by scaling.
Interestingly, S−T ΩS−1 = Ω. We conclude that if rankΩ = 1 (i.e, if the dis-
tance measure is parabolic) a projectivity S which maps Ω onto itself does not
necessarily preserve distances.

A combination of rotation, translation, re�ection and scaling is called an an-
gle preserving transformation or similarity transformation. A similarity trans-
formation leaves I and J invariant. There is no corresponding concept in non-
degenerated geometries. There, a projectivity either leaves distances and angles
invariant, in which case it is an isometry, or it a�ects both.

In Section 4.11.4, we mentioned that a circle (the locus of a point at constant
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I J

Ψ

Figure 4.39. A Euclidean circle is on I and J .

distance from a �xed point) is a conic which has contact with the absolute conic in
two points. In the degenerated Euclidean case, that would correspond to a conic
through I and J since such a conic would be tangent to Ψ in those points, see
Figure 4.39. Let us verify this. If C is the coe�cient matrix from Equation 4.6,
page 36

IT CI = a− b + 2ic = 0 ⇒
{

a = b

c = 0

If C is scaled so that a = b = 1, the point equation becomes x2+y2+2dx+2ey+f =
0. By substituting f = d2 + e2 − r2 we get

(x + d)2 + (y + e)2 = r2

which is the familiar equation for a circle with radius r centered at (−d,−e).
Because I and J are on all Euclidean circles, they are often called the circular

points.

The center of a conic is the pole of the line at in�nity. For a parabola, which
is tangent to the line at in�nity, the center is the point of contact.

In Figure 4.40a, the ideal lines that are tangent to a conic C has been drawn.
The points r1, r2, r3, r4 in which the lines intersect are the focal points of the
conic. Provided that C is real, two of them will be real and two will be conjugate
complex. To see that, consider Figure 4.40b where l is the line at in�nity, p is the
center of the conic (the pole of l), m is the line pI, and m′ is the line pJ . l and
p are real while m and m′ are conjugate complex. The situation is the same as
in Figure 4.25b, page 55 although in this case, l is an exterior line. The tangents
through I can therefore be written l + λm and l − λm where

λ2 = − lT C−1l

mT C−1m
(4.27)

Similarly, the tangents through J are l + λ′m′ and l− λ′m′. It is easy to see that
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p
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Figure 4.40. The focal points and axes of a conic.
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m′ = m and λ′ = ±λ. Assuming λ′ = λ, the focal points are

r1 = (l + λm)× (l + λm)

r2 = (l + λm)× (l − λm)

r3 = (l − λm)× (l + λm)

r4 = (l − λm)× (l − λm)

(4.28)

Since l is real, r1 = −r1, r4 = −r4, and r2 = −r3. Therefore, projectively, r1 and
r4 represent real points while r2 and r3 are conjugate complex.

r1

r4

minor axis

major axis

Figure 4.41. The true focal points and axes of a conic.

The line r1r4 is the major axis and r2r3 is the minor axis of the conic, see
Figure 4.40c. Note that also the minor axis is real since r2 and r3 are conjugate
complex. The axes are diagonals of the quadrilateral formed by the four tangents.
Therefore, they intersect in p, the pole of l (cf Figure 4.27, page 56). In other
words, the axes intersect in the center of the conic. Furthermore, if we compare
Figure 4.40d with Figure 4.23b on page 53 where p1, p2, r2, q3 were found to be
harmonic, we see that r3, r1, q, J are harmonic (q is the intersection of m and
r1r3). It follows that m, m′ and the major and minor axes are harmonic. Hence,
the axes are perpendicular. Of course, since the line at in�nity is drawn as an
ordinary line in Figure 4.40c, the location of the focal points and axes in the �gure
is not correct. Figure 4.41 shows the same drawing with I and J at their proper
positions.

Confocal conics have the same focal points. From the de�nition above it is clear
that all conics tangent to the same four ideal lines are confocal, see Figure 4.42.

The equation

x2

a2
+

y2

b2
= 1 (4.29)

where 0 < b < a represents an ellipse centered at the origin, whose major axis is
2a and minor axis 2b. Using Equations 4.27 and 4.28 we can compute the focal
points: √a2 − b2

0
1

 ,

−√a2 − b2

0
1

 ,

 0
i
√

a2 − b2

1

 ,

 0
−i
√

a2 − b2

1


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I

J

Figure 4.42. Confocal conics have the same ideal tangents.

The sum of the distances from an arbitrary point p = (x, y) on the ellipse to the
two real focal points is

d =
√

(x−
√

a2 − b2)2 + y2 +
√

(x +
√

a2 − b2)2 + y2

Using the Equation 4.29 we can simplify this to d = 2a, which is a well-known
property of the focal points. Interestingly, the sum of the distances from p to
the conjugate complex focal points turns out to be 2b. Since an arbitrary ellipse
can be transformed into the standard form (4.29) by a rigid motion, this is true
for the focal points of all ellipses. Similar results hold for the focal points of a
hyperbola.

The de�nition of focal points as intersections of ideal tangent lines is quite
interesting. For example, it shows that the Euclidean distance measure is not
necessary to de�ne focal points; the ideal points I and J su�ce. In elementary
Euclidean geometry, the focal points of a hyperbola are de�ned slightly di�erent
from those of an ellipse. Here, the de�nition does not depend on the type of conic.
Concepts such as the major and minor axis, confocal conics etc become very easy
to de�ne.

Finally, we would like to point out that the de�nition of focal points generalizes
to non-Euclidean geometries: the focal points of a conic C are still the intersections
of the ideal lines tangent to C. However, when Ω is proper, the four tangents will
intersect in six points. Thus, in non-Euclidean geometries, a conic has six focal
points3.

4.12.4 A�ne geometry

In a�ne geometry we study the subgroup of the projective transformations which
leaves a given line invariant. This invariant line4 is called the line at in�nity. In

3In Euclidean geometry the two �missing� intersection points are I and J , which are usually
not regarded as focal points.

4The line is invariant as a line � it is not necessarily point-wise invariant.
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contrast to Euclidean geometry, which also has a line at in�nity, there is no metric
in a�ne geometry.

All concepts that can be based on the line at in�nity alone are part of a�ne
geometry. For example, parallel lines are concurrent with the line at in�nity
(Section 4.11.3). The midpoint of a line segment pq is the harmonic conjugate of
r with respect to p and q, where r is the intersection of the line pq and the line at
in�nity. Thus, both parallelism and midpoints of line segments are a�ne concepts
and, by de�nition, they are left invariant by a�ne transformations. A number of
theorems that are often associated with Euclidean geometry are actually a�ne,
for example

• the diagonals of a parallelogram bisect each other, and

• the line joining the midpoints of two sides of a triangle is parallel to the
remaining side.

However, the fact that the perpendicular bisectors of the sides of a triangle are
concurrent is not an a�ne theorem since the concept of perpendicularity is not
de�ned in a�ne geometry.

In contrast to projective geometry, there is no duality between points and
lines since there is an invariant line but no invariant point. (Note that Euclidean
geometry also lack duality while there is full duality in hyperbolic and elliptic
geometries.)

Since there is a line at in�nity associated with both a�ne and Euclidean ge-
ometry, we can think of Euclidean geometry as a special case of a�ne geometry
where the absolute points I and J have been added and where the unit distance
has been de�ned. However, there is no such relationship between a�ne geometry
and hyperbolic or elliptic geometry. The in�nity in hyperbolic and elliptic geom-
etry is represented by a proper conic, and there are two points at in�nity on every
line. Therefore, a�ne theorems are in general not valid in non-Euclidean metric
geometries.

4.13 Orientation of projective elements

The elements of the real projective plane have no orientation. For example, a
projective line has no forward direction. Consequently, it is not possible to speak
about the line segment pq, where p and q are two points on a line.

Sometimes, however, it is convenient to assign a direction to each line and
conic.

One way of orienting a line l is to select three distinct points p, q, r on l. The
orientation of l is then the direction in which we can move from p to q without
passing through r. This is of course closely related to the concept of separation
(Section 4.9).

However, the concept of orientation can be given an algebraic de�nition which
is more general and better suited for geometrical computations. The basic idea is
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to keep track of the sign of the homogeneous coordinates. A line in the unoriented
projective plane P2 is identi�ed with a one-dimensional linear subspace of R3 and
all vectors in that subspace represent the same line. We make no distinction
between l and kl, where l ∈ R3 and k ∈ R, k 6= 0. In the oriented projective plane
T2, however, l and kl are equivalent only if k > 0. Each line l in P2 is replaced in
T2 by two distinct, oppositely oriented lines l and −l. −l is called the antipode

of l. Similarly, each point p in P2 is replaced by two oppositely oriented points p
and −p in T2. This results in a double covering of the projective plane, and T2 is
therefore also called the two-sided projective plane. The two sides are sometimes
called the front range and back range. With the standard R3 embedding of the
projective plane (Section 4.1), a point

p =

p1

p2

p3


is said to be on the front range if p3 > 0 and on the back range if p3 < 0.

It turns out that it is possible to de�ne a consistent oriented geometry, if we
are careful with the signs [Stol�91]. For example, the line de�ned by two points
p and q (in that order) is

l = p× q

which is the antipode of the line on q and p:

q × p = −(p× q) = −l

The orientation of points and lines makes it possible talk about the segment pq,
the left and right side of a line, the positive turn at any point in the plane, convex
sets etc. Similar de�nitions can be made in higher dimensions.

Oriented projective geometry has several applications. For example, when
rendering a 3D scene in a computer graphics application, the use of an oriented
projective space makes it possible to distinguish what is in front of from what
is behind of the observer. In the next chapter, we will use oriented geometry to
distinguish the intersection points of curves (Section 5.2.5) and to represent the
motion of geometrical objects on the screen in a consistent way (Section 5.2.6).

Figure 4.43. An oriented conic.

To that end, we will have to assign an orientation to each conic, depicted by the
arrow in Figure 4.43. The theory as presented in [Stol�91] deals only with linear
subspaces (in the case of P2, points and lines), not algebraic curves. Although a
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conic can be considered as linear subspace of R6 (Section 4.8.9), and therefore can
be treated as an oriented point in T5, that orientation is not directly related to
the T2 orientation depicted in Figure 4.43. Instead, we will de�ne the orientation
of a conic based on its embedding in R3 (Section 4.8.8).

x

y

z

C
s

z = 1

Figure 4.44. The orientation of the conic is de�ned using a directed symmetry axis.

s

(a) s is on the front

range.

s

(b) s is on the back

range.

Figure 4.45. The orientation of the conic is determined by the orientation of s.

A real, proper conic C with a real point set (i.e., C ∈ R3×3 and pT Cp = 0
has real solutions) is represented in R3 by a double, elliptic cone. The cone cuts
out the conic in the plane z = 1, see Figure 4.44. If we assign a direction to the
symmetry axis of the cone, we will at the same time de�ne a direction of rotation
of the cone: the rotation is given by a right-threaded screw moving in the direction
of the axis. The direction of rotation in turn de�nes a direction along the curve of
intersection in the plane z = 1. The symmetry axis in R3 represents a projective
point s. Making the axis directed is equivalent to making s oriented, i.e., treating
s as an element of T2. The direction along the conic is thus determined by the
orientation of s, see Figure 4.45. For each conic with a given direction, there is
another conic with the same point set rotating in the opposite direction.

How do we compute the symmetry axis of C? Assuming that C has real
coe�cients and a real point set, there is a matrix U such that D = UT CU , D is
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diagonal, and UT U = E. Furthermore, if

D =

d1

d2

d3


U can be chosen so that d1 and d2 have the same sign and d3 the opposite sign
(Section 4.8.7). Thus, the equation pT Dp = 0 represents an ellipse centered
around the origin. The symmetry axis of the corresponding double cone is obvi-
ously the z-axis. Furthermore, an orthogonal matrix preserves the inner product
of R3 (and Euclidean R3 angles) since (Up)T Uq = pT UT Uq = pT q. Thus, U ro-
tates the double cone rigidly in R3. Consequently, the symmetry axis of C must
be the rotated symmetry axis of D, or

U

0
0
1


Actually, the z-axis is the eigenvector of D which corresponds to d3, the eigen-

vector that has a distinct sign. Since an orthogonal matrix preserves both eigenval-
ues and eigenvectors, the same holds for C. That is, C has three real eigenvalues.
One of them, say λ has a distinct sign. The corresponding eigenvectors is the
symmetry axis. (Since C is symmetric, the axis is orthogonal to the eigenvectors
which correspond to the other eigenvalues.)

A Conic with no real points cannot be represented as a real double cone. For
example, the imaginary unit circle is represented by

E =

1 0 0
0 1 0
0 0 1


whose eigenvalues are all one. Hence, it is not possible to de�ne a symmetry axis
for that conic.

Finally, we note that the complex projective plane cannot be oriented. It is
meaningless to de�ne the antipode of p as kp, k < 0 since k can be complex.

4.14 The complex projective plane

One of pdb's main features is its ability to handle points, lines and conics with
complex coordinates. In Section 5.3.4 we will discuss how such objects can be
visualized on the screen. Basically, complex points and lines will be represented by
points and lines in the real projective plane. We will try to �nd a mapping between
complex and real coordinates which preserves as many incidence relationships as
possible. It will therefore be important to know how geometric objects with real
and complex coordinates interact. For example, how many real points does a
complex line have and how many complex points does a real line have? A number
of such facts will be given in this section.
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4.14.1 Complex points and lines

We say that a point or a line in the complex projective plane P2(C) is real if the
one-dimensional subspace of C3 it has been identi�ed with is spanned by a real
vector. That is, p is a real point if

∃ q ∈ R3, c ∈ C: p = cq

Otherwise, we say that the point is complex. For example, (1, 2, 3)T and (1 +
2i, 3 + 6i,−1− 2i)T are real points, while (1, i, 0)T is complex.

It is easy to see that if p = a + ib, a, b ∈ R3, then p is real if and only if a and
b are linearly dependent.

How many real points does a complex line have? Let the homogeneous coor-
dinates of the line be l = u + iv, u, v ∈ R3, and let p ∈ R3 be a real point on that
line. The line equation is then

pT l = pT (u + iv) = pT u + ipT v = 0

Since p, u and v are all real it follows that{
pT u = 0
pT v = 0

Since l was a complex line, u and v are linearly independent. Thus, we can
consider u and v as the coordinates of two real, distinct lines. p must be on both
of them, hence p = u× v. This is the only real point on l.

We may also pose the opposite question: how many complex points does a
real line have? A real line l has in�nitely many real points. For each pair p, q of
real points on l, the complex point p + iq is also on l since

pT l = 0, qT l = 0 ⇒ (p + iq)T l = pT l + iqT l = 0

Consequently, there is an in�nite number of complex points on a real line.
Another important fact is that a complex point p = a + ib and its complex

conjugate p = a− ib de�nes a real line:

l = p× p = (a + ib)× (a− ib) = a× a + b× b + i(b× a− a× b) = 2ib× a

Since 2i is just a complex scale factor and a and b are both real, the line l is real.
Because of the duality of points and lines, the results above also apply to

points: a complex point is on one and only one real line, a real point is on in�nitely
many complex lines, and the intersection point of two conjugate complex lines is
real.

Can p and p represent the same projective point if p is complex, i.e., can we
�nd a c ∈ C, c 6= 0: p = cp? Let p = u + iv, u, v ∈ R3×3 be a complex point and
c = a + ib, a, b ∈ R be a scalar. Then

u− iv = p = cp = (a + ib)(u + iv) = au− bv + i(av + bu) ⇒ u = au− bv

Since u and v are linearly independent a = 1, b = 0 and p = p. That contradicts
the assumption that p is complex. Thus, p and p represent the same projective
point if and only if p is real.
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4.14.2 Complex and real conics

In analogy with the de�nition of real and complex points, we say that a conic
C is real if we can make its matrix real by multiplying it with a complex scalar.
Otherwise, it is a complex conic. If C = A + iB, A, B ∈ R3×3, the conic which C
represents is real if and only if A and B are linearly dependent.

It is important to note that with this de�nition, the point conic represented
by the unit matrix E is real, although it contains no real points, i.e., the point
equation pT Cp = 0 has no real solutions (Section 4.8.2).

A complex conic contains at most four real points. This follows from the fact
that a conic is completely speci�ed by �ve of its points. If there are �ve real
points on the conic, we see from Equation 4.17 on page 44 that the conic is real.
It can also be seen in the following way. If p ∈ R3, C = A + iB, A, B ∈ R3×3,

pT Cp = 0 ⇔ pT (A + iB)p = 0 ⇔ pT Ap + ipT Bp = 0 ⇔ pT Ap = 0, pT Bp = 0

Thus, p is a point on C if and only if it is on the two real (possibly degenerated)
conics A and B. Since two real conics can have no more than four real intersection
points (Section 4.8.10), no more than four real points can be on C.

If C is real, how many complex points are on that conic? Since any complex
line l = u + iv intersects C in two (complex) points, there is in�nitely many
complex points on any conic C.

We showed in Section 4.8.3 that a conic and a line have two points in common.
This analysis is valid also in P2(C) (with λ ∈ C). If a real conic C and a real line
l have a point p in common, they must also have p in common since

pT Cp = 0, C = C ⇒ pT Cp = 0

pT l = 0, l = l ⇒ pT l = 0

Since there are only two intersection points, a real conic and a real line intersect
in either two real points or in two conjugate complex points. However, a complex
line will not intersect a conic in two conjugate complex points since such points
de�ne a real line (i.e., p× p is a real line).

Two complex conics intersect in four points. If p is one intersection point and
the conics are real, p is also an intersection point. Thus, the intersection points
of two real conics are either all real or pair-wise conjugate complex.
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Chapter 5

Designing a dynamic geometry

system

5.1 Handling constraints

Drawings consisting of points, lines and algebraic curves can be created by many
graphics systems, ranging from word processors to advanced CAD systems. What
is speci�c to a dynamic geometry system is that it allows the user to place con-
straints on the positions of objects. The user may require, for example, that a
certain line must be tangent to a certain conic, and the system will make sure
that this constraint is always satis�ed.

C

p

q1

q2

t1

t2

Figure 5.1. The polar of a point with respect to a conic.

Consider the drawing in Figure 5.1, where the polar of a given point p with
respect to a given conic C has been constructed. First, the two tangents t1 and t2
intersecting each other at p were drawn. Then, the two tangent points q1, q2 were
connected by a third line, which is the polar of p. If the drawing in Figure 5.1
had been a dynamic sketch, we could have dragged the point p and watched the
polar line move, as indicated by Figures 5.2a-b.
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Figure 5.2. Dragging the pole.

p

Ct1 t2

q1 q2

polar

Figure 5.3. A constraint graph representing a polar line construction.

How can such a dynamic sketch be implemented? What kind of representa-
tions and algorithm are required? In Section 5.1.1, we will look at the possibility
of using constraint programming techniques. A number of problems with this ap-
proach, in particular those related to under-constrained systems, will be discussed
in Section 5.1.2. In Section 5.1.3, we will suggest an alternative approach.

5.1.1 Dynamic geometry as a constraint programming

problem

In a constraint programming system, the point, the lines and the conic in Fig-
ure 5.1 would be represented by nodes in a constraint graph. The constraints
would be represented by arcs between the nodes as shown in Figure 5.3. In this
case, the arcs represent tangency and collinearity constraints. Connected nodes
cooperate to determine the positions of the corresponding geometrical objects, so
that all constraints are satis�ed. If an object is moved, the corresponding node
will notify its neighbors and new coordinates will be computed for all a�ected ob-
jects. The constraint graph is not directed; information can �ow in any direction
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and an updating sequence can be initiated by any node. For example, if the user
would pick and drag the polar line in Figure 5.2, the position of the pole would
be changed. This bi-directional propagation of information makes it easy to work
with simple sketches such as the pole-polar sketch. As we shall see, however, an
unrestricted propagation of information can be a problem in more complicated
sketches, since it gives rise to ambiguities.

α β

l1

l2

m1

m2

(a) Geometric view.

l1 l2

m1 m2

α

β

=

(b) Constraint

graph.

Figure 5.4. An angle equality constraint.

Measurements, such as distances, angles and cross-ratios can also be repre-
sented by nodes in the constraint graph. In Figure 5.4a, we have drawn two
pairs of points. The angles between the lines in each pair, α and β, have been
restricted by an equality constraint. The corresponding constraint graph, shown
in Figure 5.4b, is very simple. If a line in one of the line pairs is dragged, the
position of at least one of the lines in the other pair will be updated, so that the
angles remain equal.

How can a constraint programming system be implemented? From an alge-
braic point of view, the nodes of the constraint graph are variables, and the arcs
are equations that these variables have to satisfy. Each connected component in
the constraint graph represents a system of equations that has to be solved when-
ever a node (i.e., a variable) is updated. Incidence constraints between points
and lines can be represented by linear equations. However, constraints involving
conics, angles and cross-ratios give rise to non-linear equations. Therefore, we are
in general faced with a large system of non-linear polynomial equations in several
variables.

For example, consider again the polar line construction in Figure 5.1. To
simplify the problem slightly, let us consider the positions of the given point p
and the conic C �xed. That reduces the number of free variables and thereby the
number of constraints required to obtain a unique solution. We have the following
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constraints: The lines t1 and t2 must intersect in p:

pT t1 = 0 (5.1)

pT t2 = 0 (5.2)

The lines t1 and t2 must be tangents to C:

tT1 C−T t1 = 0 (5.3)

tT2 C−T t2 = 0 (5.4)

The tangent points q1 and q2 depend on both the conic and the lines t1 and t2:

qT
1 t1 = 0 (5.5)

qT
2 t2 = 0 (5.6)

qT
1 Cq1 = 0 (5.7)

qT
2 Cq2 = 0 (5.8)

Finally, the polar line l must be incident with both tangent points:

qT
1 l = 0 (5.9)

qT
2 l = 0 (5.10)

A non-linear system of polynomial equations in several variables can be solved
either numerically or by algebraic methods. To solve the system algebraicly, one
can rewrite the equations in a di�erent basis, G, so that the system is converted
to a triangular form. It is then relatively easy to solve for one variable at the
time, using back-substitution. G is called a Gröbner basis for the system and
can always be found using the Buchberger algorithm [Cox92, Hägglöf95]. Solving
non-linear systems using Gröbner bases is somewhat similar to using Gaussian
elimination and back-substitution for solving linear systems.

The advantage of using Gröbner bases is that we get to know everything there
is to know about the given system of equations. In particular, we can see how
many solutions that the system has, and we can compute all of them. A problem
is that determining the Gröbner basis in the general case is very costly. In fact,
the Buchberger algorithm is NP-complete.

To solve the system of equations numerically, one can use a standard iterative
method such as Newton-Raphson [Dahlquist74]. However, an iterative method
requires an initial guess, which should be su�ciently close to the desired solution.
Some systems let the user provide the initial guess by letting him draw a sketch
where the constraints are approximately satis�ed. Then the system adjusts the
drawing so that all constraints become completely satis�ed. Numerical methods
and symbolic manipulations can also be used in combination to speed up the
computations [Heydon94].
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5.1.2 Interacting with under-constrained drawings

A system of equations is said to be under-constrained if it has more than one
solution. The number of solutions can be �nite or in�nite. For example, the
system of equations in Section 5.1.1 contains no constraint that prevents lines
t1 and t2 from coinciding. Therefore, there are two solutions where t1 = t2 and
q1 = q2, see Figure 5.5a and b. In those cases, the orientation of the polar
line l is undetermined. Thus, one additional constraint is required to make the
solution unique: the inequality t1 6= t2. If a system of non-linear equations is
solved by numerical methods, it is di�cult to detect that the system is under-
constrained. Most numerical methods converge to a single solution, even if there
are in�nite many. The solution found will depend on the initial seeds. With
algebraic methods, however, it is possible to determine whether a unique solution
exists or not. If Gröbner bases are used, a complete parameterization of the
solution space can be obtained.

C

p

q1 = q2

t1 = t2

(a)

C

p

q1 = q2

t1 = t2

(b)

Figure 5.5. A collapsed polar line constructions.

If a dynamic geometry system discovers that a part of a drawing is not fully

speci�ed, it may enter a dialog with the user and ask for additional constraints,
or it may ask the user to choose one of the possible con�gurations. This behavior
has been proposed for solving ambiguity problems in UniGéom (Section 2.5). For
geometry systems intended for constraint-based CAD, that may be appropriate.
CAD users are typically looking for a unique solution, an object with well-de�ned
properties such as minimum weight and size, a certain smoothness etc. The user
will continue to add constraints until the system con�rms that only one solution
remains. In contrast, sketches drawn in a dynamic geometry system are almost
always under-constrained. This is because the whole idea of a dynamic geometry
system is to allow the user to drag objects around and watch the dynamics of the
construction. That would not be possible if the position of all objects were fully
speci�ed by the constraints; at least some of the objects have to have a degree of
freedom.

Thus, under-constrained drawings are fundamental to dynamic geometry.
Given a set of user-de�ned constraints, the program will display one of the ge-
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ometric con�gurations that satisfy the constraints. By dragging objects on the
screen, the user should be able to move smoothly through a continuum of allow-
able con�gurations. For example, if the user picks a line by pressing the mouse
button while the cursor is over the line, the system should make sure that the line
remains incident with the cursor as long as the button is held down. When the
cursor is moved, the line will follow. By picking the line, the user has provided the
program with a new, temporary incidence constraint which forces the program
to select a di�erent geometric con�guration each time the cursor is moved. The
constraint is removed as soon as the user lets go of the line by releasing the mouse
button.

JJ

(a)

JJ

(b)

Figure 5.6. If the tangent of an ellipse is dragged and the cursor is moved inside the

conic, the tangent cannot stay incident with the cursor.

However, an extra incidence constraint will not always be consistent with the
existing constraints. For example, suppose the user picks a line that is required
to be tangent to an ellipse, and then moves the cursor inside the ellipse, see
Figure 5.6. Obviously, the line cannot be tangent to the ellipse and incident with
the cursor at the same time1. In this case, it might be reasonable to require
that the line passes through the point on the ellipse that is closest to the cursor
position. Thus, the constraint added during dragging operations must be chosen
carefully, in order to avoid inconsistencies. All existing constraints on the object
being dragged must be taken into account.

On the other hand, the extra constraint implied by the dragging operation
will not always be enough to produce a unique solution. If the resulting system of
equations remains under-determined, the program still needs to �xate the position
of one or several objects each time the drawing is updated. In practice, the
program will do that by adding temporary constraints until only one solution
remains. These constraints will be chosen by the program, not by the user, and
will be removed automatically as soon as new positions have been computed for
all objects. The choice of constraints is somewhat arbitrary, but should be based

1Unless it is complex. However, the screen image of the line will always be real.
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Figure 5.7. Dragging a line with two points.

on two principles:

• When an object is dragged, the motion of other, dependent objects should
be predictable and intuitive to the user. In particular, the position of the
objects should be a continuous function of the cursor position. It is also
desirable that all objects remain visible on the screen, if possible.

• The user should be able to reach every con�guration that is consistent with
the explicitly de�ned constraints through a �nite sequence of dragging op-
erations. It should also be obvious to him how he should drag the objects
in order to achieve a certain con�guration.

To illustrate this, let us look at an example. Consider the simple sketch in Fig-
ure 5.7a which consists of two points p and q and a line l. Suppose that the line l
has been restricted to be incident with p and q, or equivalently, p and q have been
restricted to be incident with l. There is only one constraint equation, l = p× q,
so the system is clearly under-constrained. Suppose the line l is dragged into a
new position. What does the user expect will happen to the other objects? We
cannot be sure, but the e�ect shown in Figure 5.7b, where the points have been
translated by the same distance as the line, seems natural to most users. Suppose
now that the position of the point p is �xated by an explicit constraint, and that
q and l remain free. It is then clear that the line l must rotate around p if it
is dragged, but what should happen to the point q? The system is free to place
q anywhere on the line l and the image of q might very well slide rapidly along
the line and out of view (see Figure 5.7c). This e�ect can be observed in many
dynamic geometry systems. It not only annoying, but it actually makes it very
di�cult to interact with the drawing. Here, it is reasonable to require that the
system keeps the distance between p and q constant (Figure 5.7d). Both in Fig-
ure 5.7b and in Figure 5.7d, the user gets the impression that the con�guration is
rigid, which makes the motion of the under-determined objects more predictable.
However, the user must still be able to change the distance between the points; if
the user picks and drags q, the system might choose to keep p and l still. In that
case, the con�guration will not and should not appear to be rigid.
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Thus, in order to resolve ambiguities, the program has to add and remove extra
constraints on the �y, as the user picks and drops objects on the screen. The choice
of these constraints will depend on the type of objects that the user is interacting
with and the constraints previously de�ned by the user. To make this possible,
the constraints must be represented internally so that the geometric interpretation
of the equations are made explicit. It would be an extremely di�cult task for a
program to analyze a large, under-constrained, non-linear system of equations and
based on that analysis select additional constraints that will produce not only a
unique solution, but the solution expected by the user. The polar construction
example above (Figure 5.5) indicated how di�cult it can be to �nd the right set
of constraints at the algebraic level. In fact, one of the main problems with using
the Gröbner bases (Section 5.1.1) in this context is that when the given system of
equations has been transformed into triangular form, the equations can no longer
be given a simple geometric interpretation. Thus, when using Gröbner bases, we
can easily see that a system is under-constrained, but it will not be obvious how
we should make it well-constrained.

l1 l2

p11

p12

p13

p14
p21

p22

p23

p24

(a) Geometric view.

p11 p12 p13 p14 p21 p22 p23 p24

CRCR
=

(b) Constraint graph.

Figure 5.8. Two sets of collinear points with equal cross-ratio.

Sometimes there is so little information available that the program cannot
guess what the user is trying to accomplish by a dragging operation. Figure 5.8a
shows two lines l1 and l2, with four points on each line (p11 through p14 and p21

through p24). Assume that the points pij are restricted to be incident with the
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line li, and that the cross-ratios (p11 p12 | p13 p14) and (p21 p22 | p23 p24) must
be equal. The constraint graph is shown in Figure 5.8b and the corresponding
system of equations is{

pT
ij li = 0 i = 1, 2, j = 1, 2, 3, 4

(p11 p12 | p13 p14) = (p21 p22 | p23 p24)

Now, assume that the user picks point p11 and drags it. How should the drawing
be updated? In this case, the system might assume that the user does not want
to change the position of the lines. If the program chooses to keep the remaining
points on l1 �xed, the cross-ratio will be changed. Then the position of at least
one point on l2 must be modi�ed, but which one? On the other hand, it may be
just as reasonable to keep the cross-ratio �xed when p11 is dragged, and instead
update the position of the remaining points on l1, i.e., p12, p13 and p14. This
ambiguity cannot be resolved automatically. The user must tell the program
what he intends to do by manually placing extra constraints on the objects. For
example, he could tell the system that the position of the points p12, p13 and p14

should be �xated at their current positions. Of course, if he later decides to drag
one of those points, he would �rst have to remove those extra constraints again.

Adding and removing constraints manually to �xate the positions of certain
objects during updates is very cumbersome. One way to avoid it is to restrict
the �ow of information in the constraint graph. When creating the drawing in
Figure 5.8a, we might want to specify, once and for all, that all points on l1
should be movable, that we only want to measure their cross-ratio, and that this
cross-ratio should determine the position of, say, p24 relative to p21, p22 and p23

so that (p21 p22 | p23 p24) = (p11 p12 | p13 p14). This gives the system a lot of extra
information: the position of p24 is completely determined by the other points. All
points except p24 are freely movable along the lines, and if one of them is dragged,
only p24 should be a�ected. This completely speci�es what should happen during
dragging. No other constraints will be necessary.

5.1.3 A construction-oriented approach

We made three important observations in the previous sections:

• Algebraic methods for solving large systems of non-linear equations are slow
and numerical methods are di�cult to use for under-constrained systems.

• When updating under-constrained drawings, the program needs to add extra
constraints automatically in order to produce a unique solution. That will
be feasible only if the geometric interpretation of the constraint equations
has been made available to the program.

• Unrestricted propagation of information in the constraint graph may create
ambiguities that are di�cult for the program to handle.
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We have therefore adopted a di�erent strategy in pdb. Instead of having a gen-
eral constraint graph where information can �ow in any direction, we have chosen
a simpler type of directed acyclic graph (DAG) where information only �ows in
one direction. Furthermore, each node in this graph is a combination of a graph-
ical object (e.g., point, line, conic, angle) and one or several constraints (e.g.,
incidences, tangencies, equalities).

Figure 5.9 shows the construction of a simple drawing using pdb. First, two
points p and q are placed on the drawing board (Figure 5.9a). The positions of
the points are not constrained, so the user can move them freely over the screen.
The corresponding �constraint graph� is shown in Figure 5.9b. It consists of two
separate nodes of a type called FreePoint. In Figure 5.9c, a line l has been
attached to the points. The constraint graph now consists of three nodes, as
shown in Figure 5.9d. A new node of type LineOnTwoPoints has been connected
to the point nodes. This means that the line l will always be incident with the
the two points; if one of the points is moved, the line will follow. The line node
will simply fetch the current position of the points and update its own position
accordingly, using the formula l = p× q. Thus, information �ows in the direction
of the arrows in Figure 5.9d; never in the reverse direction. Consequently, the
user will not be able to change the position of the points by dragging the line.
We will call the points p and q the parents of the line l, and l the child of p and
q. Since the graph basically shows how the objects depend on each other, we will
call it a dependency graph.

Next, a point r is attached to the line l, as shown in Figures 5.9e-f. A new node,
called PointOnOneLine has now been connected to the line node. Whenever the
position of the line is changed (because one of the points p and q is dragged), the
point r will update its position so that it stays on its parent line l (Figure 5.9g).
However, r still has a degree of freedom � it can be dragged along l (Figure 5.9h).

Thus, we have shapes that are completely unconstrained (the FreePoint),
shapes whose positions are completely determined by the position of their parents
(the LineOnTwoPoints), and shapes whose position is only partly determined by
their parents (the PointOnOneLine).

The position of r on the line l is not completely determined by the constraints
placed on r. However, the PointOnOneLine node understands the geometric sit-
uation and can add another, temporary constraint when the position of r needs
to be updated. These extra constraints will be discussed in Section 5.2.6, and
we will see that, for example, it is reasonable to preserve the relative distances
between r and the points p and q when l moves. The PointOnOneLine node will
use this constraint automatically, without any user intervention.

Now, return to the polar line of Figure 5.1. The representation of this con-
struction in pdb is shown in Figure 5.10. The top nodes represent the given point
p (here, a FreePoint) and the given conic C (here, a FreeConic). The two tan-
gent lines are represented by two LineOnConicAndPoint nodes, which are children
of p and C. The tangent points are represented by two PointOnConicAndLine

nodes, which are children of the conic and the tangent lines. Finally, the polar
line is represented by a LineOnTwoPoints node, which is the common child of the
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Figure 5.9. A simple drawing implemented using a construction-oriented approach.
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Figure 5.10. The representation of the polar line construction in pdb.

two tangent points. When p is dragged, the position of all dependent nodes are
updated in turn. In this graph, only the conic and the point p have some degree
of freedom. The position of all other shapes are completely determined by their
parents.

5.1.4 Comparing pdb with constraint-based systems

When creating a dynamic drawing, a user of a system based on general con-
straint programming would �rst create a set of shapes (points, lines, conics), then
add suitable constraints to �xate their positions. The drawing would be repre-
sented as a set of variables (object positions) and a set of equations (constraints).
In contrast, the directed, acyclic dependency graph used in pdb represents the
�constructional history� of the drawing, one of the main ideas in [Naeve89]. The
nodes, each one being a combination of a shape and a constraint, are added to the
graph in the same order in which the user creates the corresponding objects on the
drawing board surface. The resulting graph will closely match a geometer's mental
image of a ruler-and-compass drawing. One could say that users of constraint-
based systems are encouraged to think of drawings in terms of speci�cations while
pdb encourages its users to think in terms of geometric constructions.

Constraint-programming systems have some advantages. Thanks to the free
propagation of information in the constraint graph, the user interface can be made
more �exible. In pdb, the only way to move line l in Figure 5.9 is to pick and
drag one of the points p or q. In a constraint programming system, it would be
possible to drag l and let the system update the position of p and q. Also, it is not
always obvious how to construct a drawing. For example, given three concurrent
lines l1, l2 and l3, how do we construct the triangle for which the lines are the
perpendicular bisectors of its sides? The drawing is much easier to specify as a
set of constraints on the vertices a, b and c of the triangle (see Figure 5.11), such
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Figure 5.11. A triangle determined by the perpendicular bisectors of its sides.

as 
a× b ⊥ l1

b× c ⊥ l2

c× a ⊥ l3

On the other hand, there is usually an obvious way of constructing a drawing step-
by-step, and in that case, it is just extra work to formulate a set of constraints
that de�ne the drawing. Actually, it can be quite di�cult to come up with a
consistent set of constraints. The creators of the constraint-based drawing editor
Juno-2 (Section 2.6) have noted in [Heydon94] that �the e�ective de�nition of
constraints can require more mathematical sophistication than most users have�.

The main advantage of using a DAG representation is that the geometric
interpretation of the constraints is made explicit. The ambiguities in the speci�-
cation of the drawing are not a hidden property of a large system of equations but
represented by free parameters in certain object types, such as PointOnOneLine.
When updating the drawing, the system can use this information to de�ne extra,
temporary constraints which uniquely determine the new position of every object
and at the same time make the motion of objects predictable and intuitive to the
user. It also makes it possible for the system to provide e�ective feed-back when
the user wants to add or remove constraints.

Since the DAG representation of the drawing is constructive, the computations
can be made very fast. Because every node in the directed graph is independent of
its descendants, it is not be necessary to solve a large system of equations each time
a node is added. The new node can express the position of the geometric primitive
it represents in terms of the coordinates of its parents, usually in closed form. The
order in which the nodes of the graph are updated can also be precomputed; when
the information in a node is changed, its descendants will be requested to update
their internal information only once.

The main problem with the combined shape and constraint representation in
pdb is that the number of node types required can be very large. In principle, a
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new node type will be required for every combination of object (point, line, conic,
angle, distance) and constraint. However, we can get away with a fairly limited
number of primitives (Section 5.2.1), and rely on macros (Section 5.3.6) for more
complicated constructions.

5.2 Mathematical model and internal representa-

tion

5.2.1 Shape primitives and constraints

How many types of nodes are needed for creating dynamic drawings involving
points, lines and conics? Let us for a moment ignore the conics and just con-
centrate on the points and lines. Clearly, we need the node types FreePoint,
PointOnOneLine and PointOnTwoLines. The duals will then be called FreeLine,
LineOnOnePoint and LineOnTwoPoints, respectively. Actually, it would su�ce to
implement only the last type of line, LineOnTwoPoints since two extra FreePoint
instances and a LineOnTwoPoints child could serve as a �free line�. However, if
we want the system to be able to automatically dualize a drawing involving free
points and points on one line, we must implement node types representing all
duals.

Conics can be de�ned in many more ways. What we call a FreeConic

is a conic that is de�ned by a coe�cient matrix. It has no parents. A
conic can also be de�ned by �ve of its points (ConicOnFivePoints), by four
of its points and one of its tangent lines (ConicOnFourPointAndOneLine)
or by three of its points and two of its tangent lines
(ConicOnThreePointsAndTwoLines). However, while a conic is uniquely deter-
mined by �ve points, there are two conics that go through four points and touch
one line, and four conics that go through three points and touch two lines. Thus,
a ConicOnFourPointAndOneLine and a ConicOnThreePointsAndTwoLines

have one (discrete) degree of freedom. The line duals of these con-
ics are called ConicOnFiveLines, ConicOnFourLinesAndOnePoint, and
ConicOnThreeLinesAndTwoPoints, respectively2

We have not yet attempted to implement conic/conic tangencies in pdb, al-
though such constraints would certainly be very useful. For example, circles in
hyperbolic geometry are conics which have double contact with the absolute conic
(Section 4.11).

A conic can be a parent of a point or a line. As we saw in Section 5.1.3, the
points where a line intersects a conic are represented by the PointOnConicAndLine
nodes. Since there are two possible solutions, a PointOnConicAndLine has one
discrete degree of freedom. Two conics de�ne four intersection points in gen-
eral. These are represented by PointOnTwoConics nodes. As a convenience,
we have also implemented PointOnOneConic, which has one continuous degree

2In the current prototype, pdb version 2.2, only FreeConic, ConicOnFivePoints and
ConicOnFiveLines are operational.
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of freedom (it can be dragged along the conic). The line duals are called
LineOnConicAndPoint, LineOnTwoConics and LineOnOneConic, respectively.

JJ

(a) (b)

Figure 5.12. A LineWithAngle can be translated but not rotated (a).

A LineOnPointWithAngle has no degree of freedom and cannot be dragged (b).

So far we have de�ned 19 node types, which only deals with incidence re-
lationships. A few more nodes are needed for representing metric constraints.
Again, concentrating only on points and lines, we want to be able to restrict a
free line to have a certain angle with respect to another line. Thus, we need
a LineWithAngle node. The parent of a LineWithAngle serves as a base line,
from which the angle is measured. The LineWithAngle has one degree of free-
dom; it can be translated, but not rotated, see Figure 5.12a. Sometimes, we also
want the line to pass through a certain point. That adds another constraint,
and we need to de�ne a LineOnPointWithAngle node type, which has no de-
gree of freedom (Figure 5.12b). The point duals are called PointAtDistance and
PointOnLineAtDistance, respectively.

d

l
pppp

Figure 5.13. There might be no point on l at distance d from p.
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PointOnLineAtDistanceand LineOnPointWithAngle introduce a slight math-
ematical complication. Given a point p, a line l and a distance d, there is
not always a point q on l such that distance to p is d, see Figure 5.13. Thus,
PointOnLineAtDistance is one of the few node types that must be prepared
to handle cases where there are no solutions to the constraints they represents.
LineOnPointWithAngle does not su�er from that problem provided that the an-
gle metric is Euclidean. Given a line l, a point p and an angle a, there is always
a line m on p whose angle to l is a. This is because the set of lines cutting a
�xed line at a constant (non-zero) angle will sweep the entire projective plane.
However, that is not true in general. In hyperbolic geometry, for example, the en-
velope of a set of constant-angle lines is a conic which has double contact with the
absolute. For straight angles and right angles the conic is degenerate. Obviously,
points inside the conic are not on any line in the set.

l1

l2

l3 l4

(a) Geometric view.

FreeLineFreeLineFreeLine

LineWithCrossRatio

Scalar

(b) Internal representation.

Figure 5.14. Given three intersecting lines l1, l2, l3, a scalar value can be interpreted as

the coordinate of a fourth line l4.

The cross-ratio of four lines that intersects in the same point was de�ned in
Section 4.3. Given three lines l1, l2, l3 and a cross-ratio r, we can determine l4 so
that (l1 l2 | l3 l4) = r. Therefore, we have introduced LineWithCrossRatio, which
has four parents: three other lines (which must intersect in the same point), and
a value representing the cross-ratio, see Figure 5.14a and b. Whenever one of the
three parents lines or the scalar value is changed, the position of the fourth line
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will be updated. The point dual is called PointWithCrossRatio.

Could we manage with a smaller set of node types? In principle, yes. For
example, the tangent to a conic through a given point can be constructed from
PointOnConic, PointOnConicAndLine, and LineOnTwoPoints as shown in Fig-
ure 5.15. First, we pick three points r1, r2, and r3 on the conic. Then the lines
li through p and ri are drawn. Let the second intersection point of li and the
conic be si. Let u1 be the intersection of segments r1s2 and r2s1, and u2 be the
intersection of r2s3 and r3s2. Finally, draw the line m through points u1 and
u2. If m intersects the conic in q1 and q2, then pq1 and pq2 are the two tangents
through p. In fact, some tools, such as Cabri (Section 2.1), actually implement
the construction as a macro. However, the construction will collapse if, for ex-
ample, r1 and r2 come too close together. The construction is not numerically
stable and the auxiliary points and lines must be carefully selected. Therefore,
we have chosen to implement the LineOnConicAndPoint as a primitive, whose
coordinates can always be computed using a numerically stable algorithm. Also,
drawings involving a large number of tangents will be updated signi�cantly faster
when LineOnConicAndPoint is a primitive. (The tangent construction in Fig-
ure 5.15 involves no less than 18 points and lines, all of which must be updated
in each cycle.)

l1

l2

l3

m

p

q1

q2

r1

r2

r3

s1

s2

s3

u1

u2

Figure 5.15. The construction of the tangents of a conic through a given point p.

There is also another reason for making LineOnConicAndPoint a primitive.
As we mentioned earlier, there are actually two lines that go through a given point
p and touch a given conic C, and it is important to di�erentiate between the two.
If the tangent line is constructed by a macro, the result will depend subtly on
how the macro is written, and the user will not be able to drag the tangent line
between its two alternative positions.

Nodes for angle and distance constraints are not strictly necessary since it is
possible to put constraints on cross-ratios in pdb. Instead of directly specifying
the angle between two lines which intersect in a point p, we could specify the
cross-ratio of four lines: the two given lines and the two ideal lines on p. However,
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distance constraints can not be handled that easily in Euclidean geometry, where
there is no complete duality between points and lines and between distances and
angles. Also, angles and distances are easier to represent graphically on the screen,
and constraints involving angles and distances can be de�ned using a drag-and-
drop interface.

In some cases we have used macros to implement constructions that are
primitives in other systems. For example, the construction of a polar line is
a primitive in Cinderella Café (Section 2.3). Given a point p and a conic C,
the coordinates of the polar line are l = Cp. Because of the simple form and
the good numerical properties of this equation, it is quite natural to make it
a primitive. We have chosen to implement it as a macro, though, because
it can be constructed from LineOnConicAndPoint, PointOnConicAndLine and
LineOnTwoPoints nodes, without placing auxiliary points and lines at arbitrary
positions. Also, there is only on polar line for each given point, so there is no
ambiguity that the macro has to deal with.

5.2.2 Supporting complex coordinates

As mentioned in Section 3.1, pdb can handle points, lines and conics with complex
coordinates. All computations are done in complex arithmetic, and all algorithms
work for complex coordinates. Geometric constructions in the complex projective
plane can therefore be supported.

However, objects with complex coordinates are much harder to interact with.
A complex point has four real dimensions, which is more than can be visualized
faithfully on a �at computer screen. Furthermore, a pointing device such as a
mouse provides input in just two real dimensions.

Because of these di�culties, the user interface of pdb was designed basically
for real projective geometry. The use of complex arithmetic is primarily intended
to simplify the treatment of real geometric constructions. Special cases can be
avoided since the system can handle complex solutions of equations. An example
is the polar line in Figure 5.1, page 81, where the same geometric construction
works both for interior and exterior points thanks to the complex arithmetic. The
support for complex coordinates also makes it possible to use absolute elements
such as the complex circular points I and J in Euclidean geometry. That allows us,
for example, to construct a set of confocal conics using only incidence constraints
(Section 4.12.3).

The support for displaying and interacting with complex objects is limited.
In situations where objects with complex coordinates must be displayed, they
are mapped to the real plane and shown on the screen in a di�erent color. The
mapping can be de�ned in many ways, which will be discussed in Section 5.3.4.

5.2.3 Common interaction problems

When using dynamic geometry systems, you will probably see strange things
happen from time to time. An object might suddenly jump into a di�erent position
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or disappear completely. A group of objects may converge to the same position
� drawn to each other by invisible forces, they end up in a pile on the screen. At
�rst you might think that this is caused by some easy-to-�x bugs in the program.
However, it turns out that a number of non-trivial mathematical problems have to
be addressed in order to work out a satisfactory solution. It is no coincidence that
these defects are present in virtually every existing dynamic geometry system.

In this section we will look at a number of problems that can occur when a
user is dragging objects around on the screen. In the following sections we will
suggest how to avoid them. The problems we will talk about here have one thing
in common: they are caused by the presence of under-constrained objects such as
movable points on a line, movable tangents of a conic, etc. There are no problems
with objects whose positions are completely determined by constraints.

Drifting objects

If the user picks a line and starts dragging it, points that have been attached
to it will also be moved so that they stay on the line. It is not uncommon in
geometry systems that under-constrained points on a line fail to return to their
original positions if the line is returned to its original position. As a result, under-
constrained points will drift along the line if the line is jogged. Usually, the points
come closer and closer together, but they can also drift apart. Consider the sketch
of the theorem of Pappus in Figure 5.16a. After rotating the top line a few laps,
we may very well end up with the con�guration shown in Figure 5.16b. Although
the drawing is still consistent and satis�es all constraints, the points in (b) have
come so close together that we cannot see which points are collinear and which are
not. This behavior is very unfortunate since the user will often try to understand
the dynamics of a construction by repeating a simple movement over and over
again. After all, that is what dynamic geometry systems are for.

During some types of dragging operations, the position of objects will be very
sensitive to the cursor movement. For example, many systems allow a free line
to be both translated and rotated. In rotation mode, the center of rotation will
usually be the position at which the line was picked. Just after the line has been
picked, the cursor is close to the center of rotation. A slight shake of the hand
will then cause the line to rotate very fast. That will often be enough to make
the drawing collapse, if free objects are allowed to drift.

A common cause of drift is that under-constrained objects are moved to the
closest allowable position each time the drawing is updated. Because the cursor
position is discrete, points on a rotating line will move along short line segments
rather than following a circle. The points will follow a spiral ending at the center
of rotation, see Figure 5.17. This is the case in Cinderella Café (Section 2.3) for
example. The drifting problem is not limited to points on a line. It also exists for
movable lines on a point, points on a conic, tangents to a conic etc.
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(a) (b)

(c) (d)

Figure 5.16. Under-constrained points on a line might move unpredictably.

Figure 5.17. If an under-constrained point on a rotating line is always moved to the

closest allowable position, it will follow a spiral because of quantization e�ects.
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Floating and runaway objects

Sometimes when a line is dragged, under-constrained points on it quickly slide
away along the line and out of sight. This problem was discussed in Section 5.1.2.
For example, the slightest movement of the top line in Figure 5.16a may cause
some of the points on it to slide away very fast to the right, resulting in the sketch
shown in Figure 5.16c.

Even if the points stay visible, they may appear to �oat around unpredictably
on the line. In Figure 5.16d, the top line has just been translated slightly. Still,
the distance between the points on it have changed. This behavior will not be
intuitive to the user. It makes it more di�cult to see how objects are related in
the drawing since everything �oats around whenever an object is dragged. It also
makes it harder to put objects in speci�c positions since each time an object is
moved, another one runs o� in another direction.

Note that this is di�erent from the problem of drifting objects. In this case,
all objects will return to their original positions if the mouse is returned to the
starting position. Nevertheless, if the points on the line are very sensitive to
cursor movement, it will be di�cult to interact with the drawing.

Typically, this problem occurs if the position of the movable points on the
line is determined by (�xed) coordinates in some coordinate system on the line.
Depending on how the local coordinate system was chosen and how the line is
oriented, the absolute coordinates of the point may change very quickly and un-
predictably.

Jumping objects

In Figure 5.18a, a point p has been attached to the intersection of a free line l
and a conic C. Suppose that l is dragged. Each time the drawing is updated
during a dragging operation, a new position for the intersection point must be
computed. In this case, that involves solving a second-degree equation which has
two roots (corresponding to the two intersection points). It is important that the
system remembers which of the two intersection points that p was attached to.
If it fails to keep track of the correspondence between the roots of the system of
equations computed in each updating cycle, p will jump unpredictably between
the two intersections (Figure 5.18b). That will not only be annoying, but it can
also destroy a construction. In Figure 5.18c, another point q has been attached to
the second intersection. The intersection of the tangents drawn through p and q
represents the pole of l. If p is suddenly given the same position as q, the tangents
become identical and the pole disappears (Figure 5.18d).

Figure 5.19a shows a slightly more complicated drawing. It illustrates the fact
that the lines connecting the opposite intersection points of two conics and the
lines connecting opposite tangent intersections are concurrent. In Figure 5.19b,
one of the conics has been dragged slightly. The system has not been able to
keep track of the intersection points. Two of them have been interchanged, and
connected points are no longer opposite. Consequently, the concurrency in (a)
have been destroyed.
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Figure 5.18. If the system does not distinguish the intersection points, the points might

jump when the line or the conic is dragged slightly.

(a) (b)

Figure 5.19. Two of the intersection points have been accidently swapped in (b).
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Jumping points and lines are usually associated with systems of equations that
have a �nite set of solutions, but the problem can also be caused by the collapse
of a local coordinate system on a line or some similar problem.

5.2.4 Continuity and repeatability requirements

From the observations made above, it is clear that a dynamic geometry system
must meet two basic requirements:

• Repeatability

If an object is dragged and returned to its original position, all dependent
objects must also return to their original positions. There must be no net
movement of any object.

• Continuity

When an object is being dragged, the position of that object and all depen-
dent objects must be continuous functions of the cursor position. No object
should be allowed to make sudden jumps.

What are the immediate implications of these requirements? Consider the se-
quence shown in Figure 5.20. In (a), a line has been attached to a �xed point p.
A second point q has been attached to the line. If the line is gripped somewhere
to the right of p and the cursor is moved to the left, the line swings around 180
degrees (b-e). Projectively, the position of the line is exactly the same in (a)
and (e). Therefore, according to the repeatability requirement, q should have the
same position in (a) and (e). Since the motion of q should also be continuous,
this means that q must either move in towards p, pass through p and return to
the starting position (Figures 5.21a-e), or q must wrap around at in�nity (Fig-
ures 5.22a-e). Neither alternative is appealing. It means that halfway through
the dragging operation, all points on the line must either meet at the center of
rotation or, alternatively, go through in�nity.
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(b)

p
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p

JJ

(d)

pJJ

(e)

Figure 5.20. When the line is rotated, how should q be moved?

What the user probably thinks should happen is shown in Figures 5.23a-e. The
motion of q is continuous, but q does not return to its starting position. To avoid
violating the repeatability requirement, we must therefore consider the position
of the line in (a) and (e) to be distinct, i.e., we must take the orientation of
the line into account. This rules out a purely projective representation of object
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Figure 5.21. If q has to return to its original position in (e), it must pass through p.
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Figure 5.22. Alternatively, q could wrap around at in�nity.

positions. What is needed is a representation based on the oriented projective
geometry discussed in Section 4.13. In oriented geometry, the lines in (a) and (e)
are distinct. In fact, they are antipodal. If the dragging operation is repeated,
the line will obtain its original orientation and consequently, q should return to
its starting position.

It is essential that not only the lines but also the points are given an orien-
tation. Consider the con�guration in Figure 5.24. The horizontal line l and the
conic is �xed while the point p is movable along l. The position of the tangent
is determined by p and the conic. If p moves to the right and passes through
in�nity3, it will come back from the left. We see that the position of the tangent
is not the same in (a) and (d). That is unavoidable if we want the motion of
the tangent to be continuous. If p is sent through in�nity again, it is reasonable
that we get the original con�guration back (e-g). The di�erence between (a) and
(d) must be attributed to the state of p. This �ts neatly into the framework of
oriented geometry. Each time p wraps around at in�nity, it switches between the
front and back ranges. If we make sure that the algorithm calculating the tangent
takes the orientation of p into account, the e�ect shown in Figure 5.24 can be
achieved.

We conclude that in order to make the geometric constructions stable and
object motion continuous, we need more positional information than is available in
ordinary (unoriented) projective geometry. We have therefore decided to base the
internal representation on an oriented projective framework. However, that does
not automatically solve all problems. In the following two sections we will look
more closely at how oriented geometry can help us to keep track of intersection
points and to make the motion of objects well-behaved.

3That cannot be achieved by dragging p. However, p can be attached to the intersection of
l and another line m. If m is then made parallel to l, p will go to in�nity.
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Figure 5.23. If we do not want q to return to its original position in (e), we must keep

track of the line orientation.

p l
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Figure 5.24. When p wraps around at in�nity, the tangent switches between the front

range and the back range.

5.2.5 Handling multiple roots

The presence of algebraic equations with multiple roots is a common cause of
discontinuities in object motion (jumping objects) during dragging operations.
Here we will explain why and discuss what can be done about it. The discussion
will be based on the conic/line intersection example in Figure 5.18. We will
assume that the conic and the line are elements of the oriented projective plane,
T2 (Section 4.13).

At a certain point during the dragging operation, the intersection point in
Figure 5.18 jumped into its alternative position. As already noted, this can be
avoided if we make sure that the position of the point is a continuous function
of the cursor position. But exactly what does �cursor position� and �continuous�
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mean? Due to the limited resolution of the pointer device, the cursor movement
will be reported to the system as a sequence of discrete coordinates vn, n =
1, 2, . . . . However, the user sees the cursor movement as a continuous curve Γ(t).
For our purposes, we can use linear interpolation to de�ne that curve in R2:

Γ(t) = (n + 1− t)vn + (t− n)vn+1, t ∈ R, n ≤ t ≤ n + 1

During a dragging operation where the cursor is moved along a curve Γ, we will
call t the position of the cursor. Let r(t) be the position of the object being
dragged or the position of an object depending on the object being dragged. r(t)
is a continuous function of the cursor position if

∀t0 : lim
t→t0−

dist(r(t), r(t0)) = lim
t→t0+

dist(r(t), r(t0))

where dist is the distance measure in the metric space we are considering. In
R2, dist may be the usual Euclidean distance. In P2, the distance between two
projective points can be de�ned as the angle between the R3 lines they represent in
the standard embedding. Such a distance measure is su�cient to de�ne continuity.
In T2, the distance between two oriented points represented by the R3 vectors p1

and p2 can be de�ned as the Euclidean distance between p1/||p1|| and p2/||p2||
on the unit sphere. A point p(t) will then be continuous in T2 when p(t)/||p(t)||
is continuous in R3.

Let C(t) and l(t) be the position of the conic and the line, respectively, during
the dragging operation, and let t represent the position of the cursor. In the
following we will assume that l is continuous in T2 and that C is continuous in
T5, or equivalently, that l/||l|| is continuous in R3 and C/||C|| is continuous in
R3×3. It will then be possible to represent the position of the intersection points
by two continuous functions p(t) and q(t). The analytical expressions for C(t) and
l(t) are not known in general, but we assume that C(t) and l(t) can be evaluated
for any t. Furthermore, we can easily construct an algorithm f which computes
the intersections of C and l for any �xed t by solving the following system of

equations: {
rT l = 0
rT Cr = 0

(5.11)

From this information, we must show how to compute p(t) and q(t) for any value
of t, so that the functions become continuous.

Let r1 and r2 be the two roots of Equation 5.11 returned by f . In general, f
cannot guarantee any speci�c order of the returned roots. Depending subtly on
the implementation of the algorithm, the roots may be interchanged from one call
to the next. There can be many reasons for that. To ensure numerical stability,
an algorithm may at some point have to choose the largest pivot element or the
largest minor for an operation and the outcome of such tests may a�ect the order
of the roots. For example, if f is based on Equation 4.9 on page 37, the choice
of q2 may have to be changed between two calls to make sure it is not too close
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to the conic. If f is based on a iterative method, the order in which the roots
are found may depend on the seeds or how the search is done. Therefore, for a
certain cursor position t0 we might have

lim
t→t0−

r1(t) = r1(t0), lim
t→t0+

r1(t) = r2(t0),

lim
t→t0−

r2(t) = r2(t0), lim
t→t0+

r2(t) = r1(t0)

Obviously, unless r1 = r2, r1 and r2 are not continuous in t = t0 and can therefore
not possibly represent p and q. In principle, we must choose between p(t) = r1(t)
and p(t) = r2(t) for every t so that p becomes continuous over the whole interval of
t. In practice, it is impossible to invoke f for every value of t. f can only be called
for a �nite set of cursor positions t = t1, t2, . . . , typically the ones detected by the
windowing system. We are then faced with the problem of determining whether
r1(tn) corresponds to r1(tn+1) or r2(tn+1). We say that an intersection point r
at t = t1 corresponds to an intersection point r′ at t = t2 if r is continuously
transformed into r′ when t goes from t1 to t2. If we assume that r1(t) 6= r2(t) for
tn < t < tn+1 then either r1(tn) corresponds to r1(tn+1) and r2(tn) to r2(tn+1),
or r1(tn) corresponds to r2(tn+1) and r2(tn) to r1(tn+1).

JJ

(a)

JJ

(b)

Figure 5.25. Tracking the intersection points is di�cult if their movement in each step

is large compared to the distance between them.

An simple way of keeping track of corresponding roots is to compare the roots
returned by successive calls to f and choose the closest match. We then assume

that r1(tn) corresponds to r1(tn+1) if

dist(r1(tn), r1(tn+1)) < dist(r1(tn), r2(tn+1))

and that it corresponds to r2(tn+1) otherwise. This strategy works reasonably
well if the step tn+1 − tn is small, but it fails more often than one might ex-
pect. For example, if the conic is elongated, the distance between the intersection
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points is small compared to the distance that the points move during the drag-
ging operation (Figure 5.25a). Of course, we can split the interval [tn, tn+1] into
several smaller steps and call f and match the roots for each intermediate step.
However, in order to choose a suitable step size we must have some idea about
how sensitive the roots are to changes in t. If the line l in Figure 5.25b is rotated
and the cursor is close to the center of rotation, the intersection points will move
a signi�cant distance for each pixel the cursor is moved. To compute the step size
in a complicated drawing is not easy. If the step is to small, the response time
will be too long.

An alternative is to de�ne a signature function s which returns a characteristic
value for corresponding roots. If there is only two roots, as in the conic/line
intersection example, s could be a real function which always returns a positive
value for one root and a negative value for the other. If s is also a continuous

function of t, then s(r1(tn)) · s(r1(tn+1)) > 0 if and only if the two roots r1(tn)
and r1(tn+1) correspond.

p

q

Figure 5.26. An oriented line intersecting an oriented conic.

How do we �nd such a signature for the conic/line intersections? In T2, we can

use the orientation of the conic and the line, depicted by the arrows in Figure 5.26.
If we follow the conic anticlockwise until we reach p, then continue along the line
in the direction of the arrow, we will make a left turn. At q, we would instead
have made a right turn. This will be true even if the line or conic is transformed
continuously. Let us express this fact algebraically.

Suppose that C, l, p, q are continuous and, to begin with, real functions of the
cursor position t during the whole dragging operation, and that C is proper for
every t. Since p and q are the intersection points, pT Cp = 0, pT l = 0, qT Cq =
0, qT l = 0. If l becomes tangent to the conic for any value of t, it will not be
possible to say anything about the correspondence between intersection points
before and after that event. Therefore, we assume that p and q are projectively
distinct over the whole interval. Since that implies p× q 6= 0, we can without loss
of generality assume that l = p× q for every t. Let

s(p) = 〈l × Cp, p〉
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With k = pT Cq = qT Cp we get

s(p) = p∗(l × Cp) = p∗((p× q)× Cp) = p∗((pT Cp)q − (qT Cp)p)
= p∗(−kp) = −k|p|2

s(q) = q∗(l × Cq) = q∗((p× q)× Cq) = q∗((pT Cq)q − (qT Cq)p)
= q∗(kq) = k|q|2

k = 0 only if p is on the polar of q. If we assume p and q are distinct all the
time, k 6= 0 for every t. Furthermore, since k is continuous, it cannot change
sign. Thus, during the dragging operation, s is strictly positive for one of the
intersection points and strictly negative for the other. Recall that the algorithm
f for a given t either returns r1 = λ1p and r2 = λ2q or r1 = λ1q and r2 = λ2p
where λ1 and λ2 are any real, non-zero scalars. λ1 and λ2 will vary with t and
they will not be continuous (they will have arbitrary signs).

Now, if r1 = λ1p and r2 = λ2q,

s(r1) = r∗1(l × Cr1) = λ1λ1p
∗(l × Cp) = |λ1|2s(p)

s(r2) = r∗2(l × Cr2) = λ2λ2q
∗(l × Cq) = |λ2|2s(q)

On the other hand, if r1 = λ1q, r2 = λ2p,

s(r1) = |λ1|2s(q)
s(r2) = |λ2|2s(p)

Since s(p) and s(q) do not change sign, we can detect when r1 and r2 are swapped
by f . If c(p) > 0 and if we de�ne

p̃(t) =

{
r1(t), c(r1(t)) > 0
r2(t), c(r2(t)) > 0

, q̃(t) =

{
r1(t) c(r1(t)) < 0
r2(t) c(r2(t)) < 0

then p̃(t) = λ1(t)p(t) and q̃(t) = λ2(t)q(t).
Because we assumed that the roots were distinct, we have c 6= 0. If l becomes

tangent to the conic, then r1 and r2 will represent the same point and c(r1) =
c(r2) = 0. Of course, no unique correspondence can be de�ned between the roots
before and after this singularity, not even in theory. On the other hand, it does
not matter which root we choose at that point since they are identical. Therefore,
we can simply replace > with ≥ in the de�nition of p̃ above.

The last step in �nding the continuous functions p and q is to remove the e�ect
of the scalars λ1 and λ2 in p̃ and q̃. The variation in magnitude is no problem;
we can always scale p̃ and q̃ to unit magnitude. However, to cancel the e�ect of
a sign change in λi, we must use the orientation of the conic. We choose the sign
of p̃ and q̃ so that they become consistent with the orientation of the conic. More
speci�cally, if u is the orientation of the conic in T2 (cf Section 4.13), let

p = η1〈u, p̃〉p̃
q = η2〈u, q̃〉q̃ (5.12)
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where η1, η2 ∈ R, η1 > 0, η2 > 0 are chosen so that |p| = |q| = 1. With this
de�nition we can write

〈u, p〉 = p∗u = η1(p̃∗u)(p̃∗u) = η1|p̃∗u|2 > 0

and the same for q.
The use of a signature for identifying the roots has been based on the assump-

tion that the coordinates of the line, the conic and the orientation vector of the
conic are all continuous functions of the cursor position t. That must be ensured
by the algorithms updating the line and the conic. For example, if the conic is
de�ned by �ve points and its coe�cient matrix C is given by Equation 4.17 on
page 44, it is evident that C is continuous only if the coordinates of all �ve points
are continuous. Furthermore, the orientation vector of the conic can be chosen
so that one of the �ve points (the same point all the time) is on the positive side
of the double cone in R3 which corresponds to the conic. Thus, the algorithm
we outlined for updating the conic can guarantee continuity if and only if the
algorithms updating each of the �ve points do the same. If every algorithm that
updates the position of an object can make similar guarantees then, by induction,
the position of every object will be a continuous function of the cursor position.

What if the conic becomes degenerated? If the conic degenerates into a line
pair (a rank 2 point conic) the signature s can be used just as before, provided
that C is continuous (in T5) at the singularity. It does not matter that |C|
becomes zero as long as the sign of C is not reversed suddenly. For example, if C
is de�ned by Equation 4.17, there will be no such problems. However, as we saw
in Section 4.13, a conic cannot maintain a consistent orientation in T2 if it goes
though a degenerated state. The orientation u will be discontinuous at that point.
From Equation 5.12 we see that the orientation of p and/or q may be reversed.
Thus, it will be possible to distinguish the two intersection points, but we will not
be able to give them a consistent orientation. Of course, if the conic degenerates
into a double line (a rank 1 point conic), p and q become identical an cannot be
distinguished.

So far we have assumed that l intersects C in two real points. However, a real
line might also intersect a real conic in two conjugate complex points. Provided
that l ∈ R3, we may assume that p = q and l = ip × q since p × q = q × q is
purely imaginary. s will then equal i · const where const is real and positive for
one root and negative for the other. Thus, the intersection points can still be
distinguished even though they are conjugate complex. They can also be given a
consistent (complex) orientation so that they remain continuous in T2. Actually,
the de�nition of p and q in (5.12) still works since 〈u, p〉 and 〈u, q〉 will be real,
positive and continuous even though p̃ and q̃ are complex.

If the line is real but represented by a complex vector (Section 4.14), things
get more di�cult. In that case, we can only assume that l = cp× q where c is a
complex, non-zero and continuous function of t. Then s = c·const will be complex
and its sign will be of no use. If c is varying with t, it is not easy to get rid of
it. It e�ectively destroys the orientation information since it can go from 1 to −1
without passing through 0. However, if the algorithms computing l can somehow
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guarantee that c is constant, we may use the signature s′(p(t)) = s(p(t))/s(p(t0)),
where t0 is the starting position of the cursor. Then s′(p(t0)) = 1 and s′(p(t))
will be real and positive while s′(q(t)) will be real and negative. Of course, the
same applies to the conic C.

The algorithm for computing p and q will not work at all if l and C represent
general, complex lines and conics since P2(C) cannot be oriented (cf Section 4.13).
In that case we must resort to continuous tracking.

C1
C2

p1

p2

p3

p4

(a)

C1

p1

p2

p3

p4

(b)

Figure 5.27. Two oriented conics.

The approach just described works well for conic/line intersections. Naturally,
it can also be used for the dual problem of computing the tangents of a conic
through a given point. However, if there are more than two roots, this approach
does not give a complete solution. For example, two conics C1 and C2 have four
common points p1, p2, p3, p4 (not necessarily distinct or real), see Figure 5.27a.
An algorithm solving the system{

pT C1p = 0
pT C2p = 0

will not be able to guarantee any speci�c order of the roots returned. As before,
we must �nd the correspondence between roots at cursor position tn and tn+1.
However, in this case the orientation of the conics will not provide enough in-
formation to do that. If we move along C1 anticlockwise to p1 in Figure 5.27a,
then anticlockwise along C2, we will make a left turn. At p2, p3 and p4 we would
instead have made a right turn, a left turn, and a right turn, respectively. Thus,
we can distinguish p1 from p2 and p4, but not from p3. Similarly, p2 can be dis-
tinguished from p1 and p3 but not from p4. That also becomes evident if we let
C2 degenerated into a line pair as in Figure 5.27b. The orientation of the lines
is determined by the orientation of the conic being degenerated. Using a signa-
ture for the conic/line intersections we can distinguish p1 from p2 and p3 from
p4. On the other hand, if we instead let C1 degenerate in the same way, we can
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distinguish p1 from p4 and p2 from p3. Suppose that the conics in Figure 5.27a
are centered at the origin. The projectivity

M =

−1 0 0
0 −1 0
0 0 1


which represents a 180 degrees rotation will map both conics onto themselves while
preserving their orientation. Still, M will swap both p1, p3 and p2, p4. This shows
that we cannot even in principle use the orientation of the conics to distinguish
p1 from p3 and p2 from p4.

For the intersection of two conics, the orientation of the conics can be used
for distinguishing neighboring intersections, while opposite intersections must be
continuously tracked using a su�ciently small step size |tn+1−tn|. The orientation
information is still very valuable since neighboring intersections often comes very
close together, making them hard to track reliably.

We should mention that there are ways of circumventing the problem of mul-
tiple roots. In Cinderella Café (Section 2.3) for example, it is not possible to pick
out a single tangent to a conic. Instead, both tangent lines are constructed at
once, and they behave like a degenerated conic (a line pair). It is not possible to
distinguish the two tangents as they are topologically connected; a point placed
on one tangent might migrate to the other line if the shape of the conic is mod-
i�ed. We feel that this is counter-intuitive and prevents the user from creating
many interesting drawings.

5.2.6 Controlling the motion of under-constrained objects

In Section 5.2.4 we argued that continuous object motion during dragging is a
highly desirable feature of a dynamic geometry system. In the previous section
we looked at a common cause of discontinuities, namely equations with multiple
solutions, and showed how that could be handled. We will now address the re-
maining problems discussed in Section 5.2.3, namely �oating objects (incoherent
motion) and drift (lack of repeatability). We will outline an algorithm for up-
dating the drawing during dragging operations which provides both continuous
object motion and repeatability in most situations, and which can be implemented
e�ciently.

General requirements

During a dragging operation, it is straight-forward to update an object whose
position is completely determined by user-de�ned constraints. We just have to
make sure that its coordinates are not recomputed until all objects on which
it depends have been updated. Such an updating order can always be found
since the dependency graph is acyclic (Section 5.1.4). Furthermore, to satisfy the
continuity requirement, the position of the object must be a continuous function
of the position of its parents. Completely unconstrained objects pose no problem
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either. They have to be repositioned only if they are dragged and in that case,
they are free to follow the movements of the cursor.

The problem is how to handle under-constrained objects.
An under-constrained object has to be repositioned if either the object is dragged
or any object on which it depends is moved. Additional constraints are needed
to completely specify the path that should be taken by the object during a drag-
ging operation. As noted in Section 5.1.2, the choice of such constraints is to
some extent arbitrary. Apart from the continuity and repeatability requirements
discussed in Section 5.2.4, the following three constraints seem reasonable:

1. If the under-constrained object itself is dragged, it should minimize the
distance to the cursor.

2. Otherwise, if possible, the object should move in the same way as the rest
of the objects. The motion on the screen will be more coherent if as many
objects as possible move in the same direction at the same speed or if they
rotate around the same point.

3. The Euclidean distance between moving objects should be preserved, if that
is possible with regard to the user-de�ned constraints. The moving parts of
the drawing will then appear to be rigid and they will clearly stand out from
the background of stationary objects. It is easier for the user to follow the
motion of a large rigid structure than to keep track of many small objects
moving in di�erent directions. If the constraints on the objects do not allow
for rigid motion, angle preserving motion is the second best alternative. The
size of the moving object con�guration will then be a�ected, but not the
shape.

Before we elaborate on this, we have to de�ne what it means for two object to
�move in the same way�. As in the previous section, let Γ(t), t ∈ R, be the path
of the cursor during a dragging operation, parameterized by arc length. The
dragging operation is initiated at t = 0, and t will be referred to as the position
of the cursor. If p is a point being dragged or a point depending on an object
being dragged, its position will be a function of the cursor position t. Because
we are interested in coherent motion, we will be concerned primarily with the
way objects move relative to each other and not so much with the path p(t) of
an individual object. We will therefore represent the motion of a point p by a
projectivity M(t) such that

∀t : p(t) = M(t)p(0)

Thus, for any cursor position t, M(t) speci�es how p has moved relative to its
starting position. We can then say that two points p and q move in the same way
if

∀t : p(t) = M(t)p(0), q(t) = M(t)q(0)
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Furthermore, if M(t) is an isometry for each t, then the distance between p and
q will be the same for all t, i.e.

∀t : dist(p(t), q(t)) = dist(M(t)p(0), M(t)q(0)) = dist(p(0), q(0))

What is expressed by requirements (2) and (3) above is that we should select the
paths of the under-constrained objects so that their positions can be described
by the same motion M , and that M(t) should preferably be a Euclidean isom-
etry (rigid motion) or a similarity transformation for each t. According to the
continuity requirement, the path p(t) of an under-constrained object has to be
continuous in T2. This implies that M : R → R3×3 must be a continuous function
of t. Moreover, in order to ful�ll the repeatability requirement, if the cursor is
returned to its starting position so that if Γ(t1) = Γ(0) for some value t1, then
M(t1) must be the identity transformation .

If all under-constrained objects cannot move in the same way, then they should
be divided into groups so that the members of each group can be given the same
motion. How can this be accomplished? If there are only incidence constraints on
an under-constrained object x, and if M is the motion of all parents of x, then we
can let M be the motion of x also. This follows from the fact that any projectivity
preserves incidences. In particular, if x is required to be incident on exactly one
other object, x can always be given the same motion as that object. If there are
metric constraints on x, M is an allowable motion for x only if M is an isometry.

Thus, we can adopt the following strategy: A motion M1(t) is speci�ed for
the object being dragged. That motion is inherited by the descendants in the
dependency graph as far down as possible. If the motion of the parents of an
object x is not compatible with the constraints on x, or if not all parents have the
same motion, then a new motion M2(t) has to be speci�ed for x. That motion will
in turn be inherited by the descendants of x, and so on. When a new motion is
de�ned for an object, we prefer the simplest form that is compatible with existing
constraints:

1. translation or rotation

2. rigid motion (a combination of translation and rotation)

3. similarity transformation (angle preserving)

4. general projectivity

As we shall see in Section 5.3.1, the user may have several open windows, which
show di�erent projections of the same drawing. When we talk about translations,
rotations and similarity transformations, we are referring to the Euclidean metric
implicitly de�ned by the coordinate system of the window in which the user
interaction occurs. In general, it will not be possible to have a set of objects move
rigidly in all windows at the same time � we have to make a choice.
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Motion of speci�c objects

We now make a precise speci�cation of the motion of every type of object, taking
into account the general requirements discussed above. For objects being dragged
(objects which of course must be under-constrained) we de�ne the following rules:

• A free point and a point on a line or on a conic is always translated, i.e.,
M(t) is a translation for every t. The translation of a free point is the same
as that of the cursor: Γ(t) = M(t)Γ(0).

• The motion of a free line is either the translation of the cursor, M : Γ(t) =
M(t)Γ(0), or a rotation around Γ(0) depending on the operating mode (the
tool currently active, state of modi�er keys etc).

• A line on a point is rotated around that point.

• The motion of a line on a conic is described by a rigid motion. For each
cursor position t, M(t) consists of a translation from Γ(0) to Γ(t) followed
by a rotation which makes the line tangent to the conic.

For objects that are not dragged but which have to be moved because another
object is dragged, we de�ne the following rules:

• An object with only one parent in the dependency graph (such as a point
on a line, a line on a point, a point on a conic, and a line on a conic) is
given the same motion as its parent.

• The motion of a point p representing the intersection of two lines, a line
and a conic or two conics, is de�ned as the translation M(t) satisfying
p(t) = M(t)p(0), provided that neither p(0) nor p(t) is at in�nity.

• The motion of a line on two points p and q is de�ned as a similarity trans-
formation M(t) such that p(t) = M(t)p(0) and q(t) = M(t)q(0). Thus, the
line is translated and rotated but is also �stretched� if p and q move further
apart.

• The motion of a line on a point p and a conic C is rigid. It is a combination
of the translation of p and the rotation around p necessary to keep the line
tangent to C.

• A common tangent of two conics is moved as a line on two points (see
above), where the two points are the tangent points to the conic.

• A line l with a �xed angle to a reference line m is given the same motion
as m. If also the given angle value is changed, this motion is followed by a
rotation around the intersection point of l and m.

• The motion of a line on a point with a �xed angle to a reference line is the
translation of the point followed by the rotation needed to keep the angle
constraint satis�ed.
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• A point at a �xed distance from another point (possibly attached to a line)
is always translated.

Any object that does not need to be moved will not be moved. In particular,
completely unconstrained objects will not move unless they are dragged. For
stationary objects, M(t) = E for all t.

Let us look at an example to see how this algorithm works. The construction
in Figure 5.28a illustrates the theorem of Desargues. The two triangles v1v2v3

and v′1v
′
2v
′
3 are perspective from p, and the intersections of corresponding sides

are therefore concurrent (cf Section 4.6). Figure 5.28b shows the corresponding
dependency graph. The top node represents p. Three lines l1, l2, l3 have been
attached to p, and two points vi, v

′
i have been placed on each line. The sides of the

two triangles are represented by LineOnTwoPointsnodes. Two of the intersections
of corresponding sides, q1 and q2, are represented by PointOnTwoLines nodes.
Finally, the line between q1 and q2 has been de�ned as a LineOnTwoPoints at
the bottom of the dependency graph. Now, if p is dragged, its motion will be
described as a translation which will be propagated downwards. The lines on p
and the vertices of the triangles have only one parent, so they inherit this motion.
Since the sides of the triangles are LineOnTwoPoints their motion is described by
similarity transformations. However, since all vertices are translated in the same
way, the similarity transformations will in this case represent the same translation.
The same is true for the rest of the objects. Thus, the whole construction is
translated like p. If l2 is dragged instead, it will rotate around p, see Figure 5.28c.
That rotation will be inherited by v2 and v′2, and the distance between v2, v′2
and p will be preserved. The four a�ected sides v1v2, v2v3, v′1v

′
2 and v′2v

′
3 de�ne

similarity transformations which are propagated to the two intersection points q1

and q2. The relative distances between v1, v2, q1 etc are therefore preserved.
We have not yet discussed how the motion of a conic should be computed.

The motion information will be used for updating points and lines attached to
the conic. If the coe�cient matrix of the conic is C(t), then for each cursor
position t we need to �nd a projectivity M(t) which maps C(0) to C(t). That is

∀t : C(t) = M−T (t)C(0)M−1(t)

Furthermore, M should be a continuous function of t and M(0) = E. If M1(t)
projects C(t) onto the unit circle, then we can choose M(t) = M−1

1 (t)M1(0). In
Section 4.8.7, we showed how M1 can be computed through diagonalization and
scaling. However, M1 will not be uniquely determined by the diagonalization
process. The problem is basically that the unit circle can be mapped onto itself
by an arbitrary rotation. Therefore, we de�ne M1 as follows.

Let r be the orientation of the conic. Let Π be the R3 plane which contains
the z-axis and r, and let n be a normal vector of Π. Let R1 be the rotation
in R3 whose axis is n and which maps r onto the z-axis. Since both r and the
axis are directed in oriented geometry, R1 is uniquely determined. R1 turns the
conic into an ellipse, centered at the origin. Next, determine a rotation R2 in the
projective plane which aligns the major and minor axis of the ellipse with the x-
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Figure 5.28. Updating a sketch showing the theorem of Desargues. Legend: FP=free

point, P1L=point on one line, P2L=point on two lines, L1P=line on one point, L2P=line

on two points.
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and y-axis. (This rotation is not uniquely determined.) Find a matrix S which
scales the coe�cients of the rotated ellipse to unit magnitude. Finally, rotate
the ellipse back again with R−1

2 , since that rotation was arbitrary. The resulting
transformation is M1 = R−1

2 SR2R1, and it maps C onto the unit circle.

A problem with this approach is that the orientation r of the conic is discon-
tinuous when C goes through a degenerated state. We need to do some continuous
tracking to detect that. Another �aw is that the points on the conic can move a
signi�cant distance even though the cursor is moved very little.

An alternative is to move every point on C to the position closest to its current
position. That is, we let p(t) be the point on C(t) that is closest to p(t − ∆t).
However, this will cause the points on C to drift: if the shape of an ellipse is
varied, the points on it will typically move closer and closer together. To avoid
drift, we could let p(t) be the point on C(t) that is closest to p(0). Then all points
on C will return to their original positions if the cursor is moved back to Γ(0).
In this case, the problem is that p(t) is not guaranteed to be continuous. At a
certain point a completely di�erent point on C can become closer to p(0), and
then the point p will appear to jump.

Verifying the continuity and repeatability requirements

We noted above that Γ(t) = Γ(0) should imply M(t) = E. It is easy to see
that the rules for computing the motion above guarantee that: M expresses the
relation between the current position of an object and the position it had when
the dragging operating was initiated. In principle, the only input to the updating
algorithm is the original positions of all objects and the current position of the
cursor.

However, there is no such guarantee for a series of successive dragging op-
erations. For example, if a point is dragged from a position p, dropped at p′,
picked up again, and moved back to p, the positions of one or several objects may
have changed. That usually happens in complicated drawings where objects wrap
around at in�nity and conics go through degenerate states.

To determine the motion of objects according to the rules above we will need
to compute, among other things, the rigid motion which maps a line l(0) onto l(t)
so that a point p(0) on l(0) corresponds to a point p(t) on l(t). Conceptually, we
�rst translate l(0) so that p(0) 7→ p(t), and then rotate the translated line so that
it becomes aligned with l(t). In unoriented geometry, this rotation is not uniquely
determined; if two unoriented lines can be aligned by a rotating α, they can also
be aligned by a rotation π − α in the opposite direction. These two rotations
represent completely di�erent projective transformations, even in unoriented ge-
ometry. There is an obvious risk that we will choose a di�erent rotation each time
the drawing is updated, which will make M(t) discontinuous. Again, the result
will be jumping objects. Luckily, there is no such ambiguity problem in oriented
geometry, since every line has a direction. The rigid motion is completely deter-
mined by p(0), l(0), p(t) and l(t). Likewise, if we need to determine the similarity
transformation which maps p(0) to p(t) and q(0) to q(t), we will compute the
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unique projectivity which maps p(0), q(0), I, J to p(t), q(t), I, J . If p(t) and q(t)
are oriented and continuous in T2, M(t) will also be continuous in T2.

Objects with complex coordinates

The updating algorithm we have outlined has to work also for objects with com-
plex coordinates. The rules for computing object motion de�ned above can in
principle be used for complex objects, although the result will be a complex mo-
tion matrix M(t). However, there are certain problems associated with complex
coordinates that have to be addressed.

First, it is not obvious what should happen when an object with complex co-
ordinates is dragged. We suggested above that it should minimize the distance
to the cursor, but the Euclidean distance between a complex point and the (real)
cursor position will be complex. We could instead require that the distance be-
tween the real screen image of the point (cf Section 5.3.4) and the cursor should
be minimal, but that will not su�ce to completely de�ne the position of the point.
The basic problem is of course that the coordinates of a complex point consists of
four real numbers, while the cursor provides only two. Because of this, the user is
not allowed to drag objects with complex coordinates in pdb. Nevertheless, these
objects have to be moved during dragging operations if they depend on the (real)
object being dragged. Therefore, we must still be able to compute the motion
M(t) for complex objects.

We saw above that the motion M(t) of every object could be made continu-
ous in the real case, thereby satisfying the continuity requirement. A necessary
condition was that M(t) could be determined unambiguously from the starting
positions of the objects and the current cursor position. In the case of rigid mo-
tion, we relied on the fact that every line has a well-de�ned orientation in T2.
That is not true in the complex case since the complex projective plane has no
front and back range (see Section 4.13). Therefore, let us take a closer look at
how a rigid motion and a similarity transformation can be computed, and what
problems occur in the complex case.

As explained in Section 4.12.3, a similarity transformation leaves the circular
points I and J invariant. It follows that a similarity transformation is com-
pletely de�ned by two pairs of corresponding points p1, p2 and q1, q2, since there
is a unique projectivity which maps four points p1, q1, I, J to four other points
p2, q2, I, J . This projectivity can be computed as described in Section 4.3. No
problem arises if p1, p2, q1 or q2 happen to be complex.

For a rigid motion, the situation is a little di�erent. Let us �rst see how it can
be computed in the real case. We want to �nd the rigid motion M which maps a
line l1 to l2 and a point p1 on l1 to a point p2 on l2, see Figure 5.29. Since we can
anticipate problems with trigonometric functions in the complex case, we avoid
using them. That will also speed up the calculations. We assume that p1 and p2

are not at in�nity and that neither l1 nor l2 is the line at in�nity. In principle,
we �rst translate p1 and l1 so that p1 is moved to the origin, then rotate the
translated line so that it becomes aligned with l2. Finally, we translate the line
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Figure 5.29. A rigid motion.
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Figure 5.30. Successive rigid motions.

onto l2 so that the origin is mapped to p2. Thus, the rigid motion can be written
M = T−1

j RijTi, where Ti is the translation which takes pi to the origin, and Rij

is the rotation which aligns the translated lines T−T
i li and T−T

j lj. If

pi =

xi

yi

1

 , li =

ai

bi

ci


then

Ti =

1 0 −xi

0 1 −yi

0 0 1


and

T−T
i li =

ai

bi

0


Rij represents a Euclidean rotation which can be written

Rij =

c −s 0
s c 0
0 0 1

 , c2 + s2 = 1
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(cf Section 4.12.3). We require that

R−T
ij T−T

i li = kT−T
j lj , k ∈ C

which can be written c −s 0
s c 0
0 0 1

ai

bi

0

 = k

aj

bj

0


where k is chosen so that c2 + s2 = 1. Since the equation corresponding to the
last row does not constrain k, we can write(

c −s
s c

)(
ai

bi

)
= k

(
aj

bj

)
(5.13)

Since (
0 −1
1 0

)(
c
s

)
=
(−s

c

)
the left-hand side of Equation 5.13 can be written

ai

(
c
s

)
+ bi

(−s
c

)
= ai

(
1 0
0 1

)(
c
s

)
+ bi

(
0 −1
1 0

)(
c
s

)
=
(

ai −bi

bi ai

)(
c
s

)
and we get (

ai −bi

bi ai

)(
c
s

)
= k

(
aj

bj

)
, k ∈ C

If we de�ne

Ai =
(

ai −bi

bi ai

)
, µi = a2

i + b2
i

then (
c
s

)
= kA−1

i

(
aj

bj

)
=

k

µi

(
ai bi

−bi ai

)(
aj

bj

)
=

k

µi

(
aiaj + bibj

aibj − biaj

)
This gives us

c2 + s2 =
k2µj

µi

c2 + s2 = 1 implies

k = ±
√

µi√
µj
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The choice of sign of k will determine the sign of the 2× 2 upper-left sub-matrix
of Rij . These two possibilities correspond to a rotation α in one direction and
a rotation π − α in the opposite direction, provided that the angle is real. If
everything is real, we can simply choose the positive value of k, which means that
the left-hand and right-hand sides in Equation 5.13 will represent the same line
in T2. Then (

c
s

)
=

1√
µiµj

(
aiaj + bibj

aibj − biaj

)
and

Rij =
(

λijQij 0
0 1

)
where

λij =
1√
µiµj

, Qij =
(

aiaj + bibj biaj − aibj

aibj − biaj aiaj + bibj

)
However, if li and lj are complex, µi and µj will be complex and the sign of

√
µiµj

will be undetermined. If we just pick an arbitrary sign, M will not necessarily be
a continuous function of p1, l1, p2, l2. If t is the cursor position during dragging,
M(t) might rotate l1 in one (complex) direction, while M(t+∆t) rotates the line
in the opposite direction. We can avoid this potential discontinuity by choosing,
for example,

λij =
|√µiµj |

µiµj

If µi and µj are real, Rij will not be a�ected by this change. The advantage is
that this factor is well-de�ned even in the complex case. However, if µi and µj

are complex, c2 + s2 6= 1 and Rij will not be a rotation exactly. As far as the user
interaction is concerned, that will be acceptable. If the lines are complex, their
(real) images of the screen will probably not appear to rotate even if c2 + s2 = 1
(cf Section 5.3.4).

However, there is another problem that has to be considered when selecting
the scalars λij . Suppose that the point p and the line l are moved to positions
p1, p2, . . . , pn and l1, l2, . . . , ln, respectively, by a series of successive dragging op-
erations. The user might be dragging p, l or any other object on which p and l
depend. As a concrete example, assume that p is a free point being dragged, and
that l is a line on p which is also tangent to a given conic. At each position pi,
the point is dropped and picked up again. Let the rigid motion determined by
pi, li, pj , lj for each separate dragging operation be Mij , that is,

pj = Mijpi, lj = M−T
ij li

(see Figure 5.30). Compare that with a scenario where p is dragged directly from
position p1 to pn in one operation. In the �rst case, the accumulated motion is
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Mn−1,n . . . M23M12. We would like this to be equal to the motion in the second
case, M1n. Why? In the updating algorithm outlined above, Mij will describe the
motion of the line l. It will be applied to all under-constrained points attached to
l and possibly their descendants. If Mn−1,n . . .M23M12 6= M1n, the �nal position
of these under-constrained objects will depend on whether p is displaced by a
single dragging operation. What is even worse is that Mn−1,n . . . M23M12 might
be complex if some of the intermediate line positions l2, . . . ln−1 are complex,
even though the starting position and �nal position, l1 and ln, are real. That
would mean that an under-constrained point on l that was real before the series
of dragging operations could end up in a complex position on l afterwards, even
though both l1 and ln are real. We do not want this to happen since pdb should
try to keep the coordinates of an under-constrained object real, if that is possible
with regard to the given constraints on the object (cf Section 5.2.2).

First, we note that the fact that a projectivity maps a real line onto a real
line does not mean that the projectivity has to be real. For example, the complex
projectivity i 0 0

0 1 0
0 0 1


maps the real line (0, 0, 1)T onto itself, but maps one of its real points (1, 1, 0)T

to (i, 1, 0)T . To understand how the choice of λij a�ects Mn−1,n . . . M23M12, we
must take a closer look at the expression of Mij .

Mn−1,n . . .M23M12 = T−1
n Rn−1,nTn−1 . . . T−1

3 R23T2T
−1
2 R12T1

= T−1
n Rn−1,n . . . R23R12T1

Since all translations except the �rst one and the last one cancel, we can concen-
trate on the concatenated rotation matrices, S1n = Rn−1,n . . . R23R12. It is easily
veri�ed that

QmjQim = µmQij , i < m < j

Thus

S1n =
(

λn−1,nQn−1,n 0
0 1

)
. . .

(
λ23Q23 0

0 1

)(
λ12Q12 0

0 1

)
=
(

λn−1,n . . . λ12Qn−1,n . . . Q12 0
0 1

)
=
(

ηQ1n 0
0 1

)
where

η = λ12λ23 . . . λn−1,n · µ2µ3 . . . µn−1

We see immediately that with the original choice of λij , namely λij = 1/
√

µiµj ,

η =
µ2µ3 . . . µn−1√

µ1
√

µ2
√

µ2
√

µ3 . . .
√

µn−1
√

µn
=

1√
µ1µn

= λ1n
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Hence we have

S1n = R1n

We can also see that if

λij =
|√µiµj |

µiµj

the factors in η will not cancel and S1n 6= R1n. A suitable choice is therefore

λij =
|√µi|

µi|√µj | (5.14)

That will satisfy all of our requirements:

• S1n = R1n

• Rij is continuous, even if pi, li, pj , lj are complex.

• Rij will be a true Euclidean rotation if pi, li, pj , lj are real.

Therefore, all objects which describe their motion as rigid will use Equation 5.14
for computing λij .

5.2.7 Representing metric information

In Sections 4.11 and 4.12, we discussed how angles and distances can be de�ned
and showed how di�erent de�nitions lead to di�erent types of geometries. We
noted that concepts such as midpoints, angle bisectors, focal points, etc. depend
on the metric we choose.

Since distances and angles can be de�ned in more than one way, and since they
are not preserved by general projective transformations, we have been careful not
to use metric concepts in classes that represent purely projective elements such
as points, lines, conics, and incidence constraints. A class which makes implicit
assumptions about a particular metric (typically a Euclidean metric) will not
be useful when we explore geometries based on other metrics. For example, we
might be tempted to introduce a line segment primitive. The segment between
two points p and q could be de�ned as the set of points r such that p and q are
separated (Section 4.9) by r and the real in�nity point on the line. However,
�in�nity point� is a metric concept, i.e., we need a metric to de�ne it. The line
may have two real in�nity points or none at all, depending on the metric. When
we talk about the in�nity point, we have implicitly assumed a geometry with a
parabolic distance measure, such as Euclidean geometry.

Therefore, metric concepts have been added on top of pdb's projective ele-
ments, as a set of new node types which represent angles, distances, metrics and
metric constraints. Some of the nodes representing metric constraints, such as
LineOnPointWithAngle, were mentioned brie�y in the previous section. Angle
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and distance measurements are represented by Angle and Distance nodes, re-
spectively. The metric itself is represented by a Metric node. In this section,
we will explain how these nodes cooperate and how angle and distance values are
represented and used in the dependency graph.

α

l1

l2

(a)

LineLine

Angle

Metric

(b)

Figure 5.31. Measuring the angle between two lines.

In Figure 5.31a, we have measured the angle α between two lines l1 and l2.
The corresponding dependency graph is shown Figure 5.31b. The Angle node
represents α and the two Line nodes represent l1 and l2, respectively. The third
parent, the Metric node, speci�es how the angle is calculated. In principle,
a Metric node encapsulates the formulas for computing angles and distances.
Di�erent Metric subclasses represent di�erent metrics and thus contain di�erent
formulas. For example, there is a EuclideanMetric subclass which computes
Euclidean distances and angles. If the user moves one of the parent lines or
chooses another metric in Figure 5.31a, the Angle node will immediately update
the angle α.

An angle value can also be used in metric constraints. In Figure 5.32a, there
is a constraint on m2 which makes its angle to m1 equal to α. If any of the
lines l1, l2 or m1 is dragged, the position of m2 will be updated to satisfy the
constraint, as shown in Figure 5.32b. The corresponding dependency graph is
shown in Figure 5.32c, where the LineWithAngle node represents m2. The Line
parent of LineWithAngle represents the base line from which β is measured,
in this case m1. The α value is fetched from the Angle node, and from that
information LineWithAngle calculates the orientation of m2. Note that the Angle
and LineWithAngle nodes must use the same Metric to make the interpretation
of the angle value consistent. If we want to verify that the angle between m1 and
m2 really equals α, we can add a new Angle node as shown in Figure 5.32d. The
corresponding drawing is shown in Figure 5.32e.

In Figure 5.32c, we saw that angle values must be passed between nodes in
the dependency graph, which brings up the question of angle representation. In
high school geometry, an angle is simply a real scalar. However, there are several
problems and ambiguities associated with such a representation:

• The angle is usually only de�ned modulo π.

• How do we distinguish an angle from its complement? Is the angle between
lines l1 and l2 in Figure 5.33, α or β?
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l1

l2

m1m2

α = 70

(a)

l1

l2

m1

m2

JJ
α = 25

(b)

LineLine LineMetric

Angle

LineWithAngle

(c)

LineLine LineMetric

Angle

AngleLineWithAngle

(d)

l1

l2

m1

m2α = 25

β = 25

(e)

Figure 5.32. The orientation of m2 is constrained by the angle between l1 and l2.
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α

β

l1

l2

Figure 5.33. Complement angles.

• Is the angle directed (i.e. can it be negative) and if so, what is the �positive
turn� in a general non-Euclidean metric?

• Angles may be complex and in�nite in non-Euclidean geometries.

Since it must be possible to connect nodes like Angle and LineWithAngle to any
type of metric node, we need a representation of angles and distances that works
in all geometries and which does not su�er from the problems just mentioned.
Let us see how such a representation can be found.

In Section 4.12 we saw that a metric can be de�ned in terms of a (possibly
degenerated) conic and a constant which �xates the unit distance. The angle
between two lines l1 and l2 which intersect in a point p was de�ned as

ang l1l2 =
1
2i

ln (u v | l1 l2) (5.15)

where u and v are the ideal lines on p.
From Section 4.7 we know that if l1 is distinct from u and v, there is a one-

dimensional projective coordinate system on p in which u is the in�nity point, v
is the origin, and l1 is the unit point. Let the homogeneous coordinates of l2 in
that system be

[l2]u,v,l1 =
(

c1

c2

)
Given another line m1, a point q on m1, and the coordinates (c1, c2)T , we can
unambiguously determine the position of a line m2 through q such that

[m2]u′,v′,m1 =
(

c1

c2

)
where u′ and v′ are the ideal lines through q. Since

(u v | l1 l2) =
c1

c2
= (u′ v′ |m1 m2)

(Section 4.9), we see from Equation 5.15 that

]l1l2 = ]m1m2
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Conic

Metric LineLine

Angle

Figure 5.34. The parent of the Metric node is the absolute conic.

l1

l2

]l1l2 l1

−l2

]l1(−l2)

Figure 5.35. The angle between two directed lines.

Thus, we can use [l2]u,v,l1 to represent the directed angle between l1 and l2. We
will call [l2]u,v,l1 the relative orientation of l2 with respect to l1 and denote it
Θ(l1, l2).

The relative orientation does not su�er from the problems listed above:

• The modulo π problem is caused by the logarithm in (5.15). For a complex
number z = reiϕ, ln z = ln |z| + i arg z = ln r + i(ϕ + 2πn), where n is
an undetermined integer. If l1 and l2 are real and the angle is elliptic
(Section 4.11) as in Euclidean geometry, then u = v and |(u v | l1 l2)| = 1
(Section 4.9). Hence

]l1l2 =
1
2i

ln (u v | l1 l2) =
1
2i

ln eiϕ =
1
2i

i(ϕ + 2πn) =
ϕ

2
+ πn

By avoiding the logarithm function and using the relative orientationΘ(l1, l2)
in all calculations we get rid of the undetermined integer n.

• Complementary angles no longer cause ambiguities. There is a one-to-one
correspondence between Θ(l1, l2) and the position of l2 relative to l1.

• If the order of the ideal lines u and v is reversed when the coordinate system
on p is de�ned, the �rst and second coordinate of l2 will be swapped, i.e., if
[l2]u,v,l1 = (c1, c2)T then [l2]v,u,l1 = (c2, c1)T . The corresponding cross-ratio
is inverted: (u v | l1 l2) = 1/(v u | l1 l2) and since ln (1/z) = − ln z, the
sign of ]l1l2 is reversed. Thus, the problem of de�ning a consistent turn is
equivalent to the problem of distinguishing the ideal lines from each other.
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In Euclidean geometry where the absolute elements are the two �xed and
distinct points I and J , that is no problem. We just de�ne u to be the ideal
line on I and v to be the ideal line on J . In non-degenerate geometries,
we can use the orientation of p and the orientation of the absolute conic to
distinguish the ideal lines (Sections 4.13 and 5.2.5).

• In oriented projective geometry, the lines l2 and −l2 are di�erent. It is then
natural to distinguish ]l1l2 from ]l1(−l2), see Figure 5.35. The measure
(5.15) is the same for both angles since (uv|l1(−l2)) = (uv|l1l2). In contrast,
the relative orientations Θ(l1, l2) = [l2]u,v,l1 = (c1, c2)T and Θ(l1,−l2) =
[−l2]u,v,l1 = (−c1,−c2)T are distinct.

• The angle measure (5.15) is unde�ned if the cross-ratio is in�nite or zero.
That happens when l2 is an ideal line, i.e., when l2 coincides with u or v.
(If l2 is real, this cannot happen in Euclidean or elliptic geometry since u
and v are always complex. However, in hyperbolic geometry the ideal lines
might be real.) When we use relative orientations, there is no problem. If
l2 = u, then [l2]u,v,l1 = (1, 0)T , and if l2 = v, then [l2]u,v,l1 = (0, 1)T .

In order to support the calculation of relative orientations all Metric types in pdb
are based on the notion of absolute elements and ideal lines and points. Either the
explicit coordinates of the absolute elements are stored inside a Metric object, or
the absolute elements are represented by separate objects that can be manipulated
on the screen. For example, the Metric node in Figure 5.34 is using the conic
represented by the Conic node as the absolute one. If the shape or position of this
conic is changed, all angle and distance measurements depending on the metric
must be updated and therefore, the Conic node is a parent of the Metric in the
dependency graph. Using the setup in Figure 5.34, the user can investigate, for
example, what happens if the absolute conic is �attened out until it approaches
the in�nity line of Euclidean geometry.

Distances are measured and constrained in a similar way. In Figure 5.36a the
distance d between two points p1 and p2 have been measured. The point q2 has

been constrained to be at distance d along a given line m from a �xed point q1

on m. The corresponding dependency graph is shown in Figure 5.36b, where the
Distance node represents the distance d and the PointOnLineAtDistance node
represents the constrained point q2. As before, the Metric node de�nes how the
distance is measured.

In hyperbolic and elliptic geometry, the distance between two points p1 and
p2 on a line l can be written

k ln (s t | p1 p2) (5.16)

where s and t are the ideal points on l (Section 4.11). The constant k determines
the unit length and can be chosen so that the distance between two real, ordinary
points is real. The three points s, t and p1 de�ne a coordinate system on l, and
[p2]s,t,p1 = (c1, c2)T is the coordinates of p2 in that system. (c1, c2)T represents
the (signed) distance between p1 and p2 and we will therefore call this coordinate
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Point
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PointOnLineAtDistance

Metric
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Figure 5.36. A constraint has been put on q2 so that the distance q1q2 equals the distance

p1p2.

the relative position of p2 with respect to p1 and denote it ∆(p1, p2). Thus, we
can handle distances and angles in basically the same way. For the same reasons
that we choose Θ(l1, l2) to represent angles, we prefer to use the relative position
for representing distances rather than relying on the distance measure (5.16).

There is slight complication, though, with Euclidean distances. In Euclidean
geometry, the ideal points s and t are the same since the absolute conic has
degenerated into a double line, the line at in�nity. Then s, t and p1 no longer
de�ne a coordinate system on l and (s t | p1 p2) in the distance formula above will
either be unde�ned or equal 1. Euclidean distances must therefore be calculated
using the standard formula

dist (

x1

y1

1

 ,

x2

y2

1

) =
√

(x2 − x1)2 + (y2 − y1)2

(Section 4.11). However, in order to maintain a uniform representation of dis-
tances in the dependency graph, we must still be able to de�ne a relative position
∆(p1, p2) for two Euclidean points p1 and p2. To do that, we obviously have to
�nd another local coordinate system on l. The system must be chosen so that
the coordinates are invariant under Euclidean isometries. More speci�cally, given
an oriented Euclidean line l and a point p on l, we must de�ne a one-dimensional
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coordinate system S(l, p) on l whose origin is p. Furthermore, S must have the
following property: if q is a point on l and M is a orientation-preserving Euclidean
isometry, then Mq should have the same coordinate in S(M−T l, Mp) as q has in
S(l, p). To achieve this, we can de�ne S as follows. Let s be the in�nity point on
l and let r be a point at unit distance from p in the positive direction of l (i.e.,
at unit distance according to the Euclidean distance formula above) . Let S(l, p)
be the coordinate system on l in which p is the origin, s is the in�nity point,
and r is the unit point. To see that this de�nition works, let s′ be the in�nity
point on M−T l and let r′ be the point on M−T l at unit distance from Mp. Since
M preserves the line at in�nity, s′ = Ms, and since M preserves distance and
orientation, r′ = Mr. Hence, [Mq]s′,p′,r′ = [Mq]Ms,Mp,Mr = [q]s,p,r.

The discussion above leads to the following de�nition of the interface to the
Metric classes:

• Given a base line l1 and another line l2, return Θ(l1, l2), i.e., the relative
orientation of l2 with respect to l1.

• Given a base point p1 and another point p2, return∆(p1, p2), i.e., the relative
position of p2 with respect to p1.

• Given a point p, a base line l1 on p, and a relative orientation (c1, c2)T ,
return the line l2 on p for which Θ(l1, l2) = (c1, c2)T .

• Given a line l, a base point p1 on l, and a relative position (c1, c2)T , return
the point p2 on l for which ∆(p1, p2) = (c1, c2)T .

• Return the scalar angle value corresponding to a relative orientationΘ(l1, l2)
(Equation 5.15).

• Return the scalar distance value corresponding to a relative position∆(p1, p2)
(Equation 5.16).

The last two functions in the Metric interface are only used for displaying angle
or distance values on the screen, as shown in Figure 5.31a.

How many Metric nodes do we need in the dependency graph? Obviously,
we will need one metric node for each type of geometry we want to work with.
However, as we shall see in Section 5.3.3, there are situations where several metric
nodes of the same type are required.

5.3 User interface design

5.3.1 A multi-view approach

Many word processors, drawing editors and CAD systems allow the user to create
several views of a text or of a drawing. A view is simply a window through which
a part of the document can be seen. A change to the underlying document is
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immediately re�ected in all open views. By creating multiple views, the user can
look at di�erent parts of the document at the same time.

Having multiple views is particularly important when using a dynamic ge-
ometry system, for several reasons. First, a single view cannot show the entire
projective plane. In particular, for every (Cartesian) view there will be a corre-
sponding line at in�nity which will always be invisible in that view, no matter how
large we make the viewport. However, if we have multiple views we can select the
coordinate systems so that the line at in�nity in one view becomes an ordinary
line in another view. Second, there are many ways of visualizing the projective
plane. For example, the base element �line� will be drawn as an ordinary, straight
line in a Cartesian view, as a circle in the Poincaré disc model of the hyperbolic
plane (Section 4.12.1), and as a box in a dependency graph. Multiple views allow
the user to compare di�erent representations of the same drawing. Third, di�er-
ent views can show di�erent levels of detail, which is important when interacting
with complicated drawings (Section 5.3.5).

There are currently three types of views available in pdb:

• CartesianView, in which the geometric base elements �points� and �lines�
are drawn as ordinary points and straight lines.

• PoincareView, in which the geometric �line� elements are drawn as Eu-
clidean circles on a Poincaré disc (see Section 4.12.1).

• DependencyView, in which points, lines and conics are represented by sym-
bols (typically rectangular boxes with text labels), and dependencies are
represented by arcs.

All views can be panned and zoomed individually. In addition, Cartesian views
and Poincaré views can apply a general, user-de�ned projective transformation to
all objects before displaying them.

In Figure 5.37, four views of the same drawing are shown. The drawing consists
of two lines and their point of intersection. In the Cartesian view shown in
Figure 5.37a, the lines are parallel, which means that their intersection point is
at in�nity. The view in Figure 5.37b is also Cartesian, but the coordinate system
has been chosen so that the line at in�nity in view (a) is an ordinary line here.
The intersection point is therefore visible and the user can select it and interact
with it. Figure 5.37c shows the corresponding Poincaré view. The last view is
a DependencyView which shows the constructional history of the drawing. The
intersection point is represented by a PointOnTwoLines node. We can see that
its position is determined by the two unconstrained lines.

If a point, line or conic is assigned a name or a color by the user, the object
will be consistently displayed with that name and color in all views. If an object
is selected in one view, it will be highlighted in all views simultaneously. This
makes it easy to identify corresponding objects in di�erent views.
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(a) Cartesian view. (b) Cartesian view with a dif-

ferent coordinate system.

(c) Poincaré disc.

FreeLineFreeLine

PointOnTwoLines

(d) Dependency graph.

Figure 5.37. Four views of the same drawing.

5.3.2 Modal and non-modal interaction

In most word processors and drawing editors, mouse interaction follows the select-
then-operate model; the user �rst selects the operands (say, two lines), and then
invokes an operation (for example, �create a point on two lines�). This interaction
model is said to be modeless because the user does not have to put the program in
a particular mode, for example by selecting a tool, in order to operate on an object.
Any operation can be invoked at any time, provided that the correct number and
type of operands have been selected. The select-then-operate interaction model is
supported by pdb. In Figure 5.37a, we could have created the intersection point
by selecting the two lines and choosing Point on Two Lines from the Macro

menu.

However, the select-then-operate model has some shortcomings. First, the
user must know which type of operands is required for a particular operation.
That is no problem in an application such as a �le manager where the objects
on the screen belong to one or two di�erent types (e.g. �les and directories) and
most operations are applicable to both types. But when most operations require
di�erent types of operands, the select-then-operate model becomes di�cult to use.
The system cannot help the user select an appropriate set of operands since it
does not know what the user intends to do. Furthermore, the user often wants to
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place new objects on the screen at the moment they are created. This applies in
particular to drawing editors. The problem with the select-then-operate model is
that the user creates a new object by selecting a menu item and therefore, the
cursor provides no useful positioning information. The new object usually has to
be placed in an arbitrary position by the system, and although the object can
be dragged into the desired position, most users �nd that awkward. Also, in a
complicated drawing it can be hard to see where the new objects go when they
are created.

For this reason, pdb also supports modal interaction. The user can select one
of several tools which determines the e�ect of subsequent mouse clicks and cursor
movement. For example, to create a movable point on a line (a PointOnOneLine),
the user would select the point tool and then click on the line to which the point
should be attached. The system would then create the new point and place it on
the line as close to the cursor as possible. As long as the point tool is selected,
the user may create additional points by clicking the mouse button repeatedly.
Modal interaction is therefore usually faster than the select-then-operate style of
interaction.

point on

this line

JJ

(a)

free point

here

JJ

(b)

line on this

intersection

JJ

(c)

JJ

(d)

Figure 5.38. Feedback from the tool.

The type of object created by a certain tool depends on the type of objects
under the cursor and, in some cases, the type of objects currently selected. For
example, if the point tool is active and there is a line under the cursor, pdb will tell
the user that it intends to create a PointOnOneLine if the mouse button is pressed,
as shown in Figure 5.38a. On the other hand, if the cursor is over the window
background, pdb will create a FreePoint at the cursor position (Figure 5.38b).
If the mouse button is pressed while the cursor is over the intersection of a conic
and a line, a PointOnConicAndLine will be created, etc.

A tool may create several objects in one operation. If we activate the line
tool and point to the intersection of two lines, pdb will propose a line attached
to the intersection point (Figure 5.38c). If the user accepts by clicking the mouse
button, pdb will �rst create the intersection point (a PointOnTwoLines) and then
create the line (a LineOnOnePoint), see Figure 5.38d.
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Figure 5.39. Another constraint can be added before the mouse button is released.

A newly created object can be dragged as long as the mouse button is held
down. If the new object is dropped (i.e. the mouse button is released) over an
existing object, a new constraint may be added to the new object. Figure 5.39a
shows the feed-back provided by pdb when the point tool is active and the cursor
is over a line. In Figure 5.39b, the user has pressed the mouse button and a
PointOnOneLine has been created. Then, while holding the mouse button down,
the user drags the point onto an intersecting line (Figure 5.39c). Finally, in
Figure 5.39d, the point has been dropped onto the intersection and the point
type has been transformed into a PointOnTwoLines.

restrict this
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JJ
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Figure 5.40. Constraints can be added to existing objects.

New constraints can also be placed on existing objects. In Figure 5.40a, a
FreeLine is gripped with the selector tool or line tool active an with the Control
key held down. In this case pdb proposes to restrict the position of the line. When
the line is dropped onto the conic in Figure 5.40b, the line is transformed into a
LineOnOneConic (Figure 5.40c).

Incidence constraints can be removed by �tearing� objects apart. Figure 5.41
shows a point p on a conic C, a free point q and a line l on p and q. If the line tool
is active, the Control key is held down and the cursor is over p, pdb will propose
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Figure 5.41. Constraints can be removed.

to detach the line from p. Note that the cursor must be over the incidence point;
if the user just pointed somewhere on l, pdb would not know whether to detach
l from p or from q. The line tool must also be active, otherwise pdb would not
know whether the user wants to detach l from p or detach p from the conic.

In general, a tool tries to make use of as many of the objects under the cursor
as possible. There are, however, exceptions to this rule. Figure 5.42a shows a
conic C with a point p attached to it. If the line tool is active and the cursor
is over p, the tool could create a line attached only to p (a LineOnOnePoint),
a free tangent to C (a LineOnOneConic) or a line through p tangent to C (a
LineOnConicAndPoint). If the tool would try to make use of as many objects
as possible, it would choose the last alternative, a tangent through p, since that
would involve both C and p. Unfortunately, that would prevent us from creating
a line on p that is not tangent to C. For that reason, the line tool will choose the
second alternative, a free line on p, in this situation. To create the tangent line
through p, we can simply press the mouse button over p, move the cursor to the
conic and release the button (Figures 5.42b-c). While the button is pressed, the
line is a LineOnOnePoint. When the button is released, and additional constraint
is added and the line is converted to a LineOnConicAndPoint. If we instead
want a tangent to C not attached to p, we can click anywhere on C except on p
(Figures 5.42d-e).

No tool will allow the user to add constraints that would create cycles in the
dependency graph. Figure 5.43a shows a simple drawing consisting of three lines
l1, l2, l3 and three points p1, p2, p3. The corresponding dependency view is shown
in Figure 5.43b. l1 is a free line, p1 is a point on l1, l2 is a line on p1, p2 is a point
on l2, l3 is a line on p2, and �nally, p3 is a point on l3. If we were allowed to drag
l1 and drop it onto p3, we would get the dependency graph shown in Figure 5.43c.
Since the graph contains a cycle, this drag-and-drop operation is disallowed.

There is one tool for each type of primitive geometric object: point, line, and
conic. There is also a measurement tool for measuring distances and angles, and
a selector tool which is used for dragging, selecting and deselecting objects. In
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Figure 5.42. Creating a line on p, a tangent through p and a tangent not on p.

Section 5.4.6 we will discuss the implementation of the tools and how new tools
can be added.

Drag-and-drop operations work smoothly only if all operands are visible in
the same view. If we would create, say, a line on a point in one view and drag
it to a second point in another view which has a di�erent coordinate system, the

line would have to jump at some moment during the dragging operation since
the orientation and position of the line will not be the same in both views. In
situations like that, the select-then-operate interaction model is easier to use; we
could simply select the two points, one in each view, and apply Macro→Line on

Two Points.

User-de�ned macros (Section 5.3.6) fetch their operands from the current se-
lection when they are invoked. Thus they only support the select-then-operate
interaction style. For example, to invoke the Focal Points macro, the user �rst
selects a conic, the chooses Macro→Focal Points of Conic. Unless there is
exactly one conic currently selected, an error message will be generated. Alterna-
tively, the system could turn macros into user-de�ned tools which would ask the
user to select suitable operands. For example, the focal points macro could ask
the user to select a conic. However, unlike the built-in tools, such �macro tools�
would not be able to suggest di�erent operations depending on what the user is
pointing to and therefore their usefulness would be limited. Creating �intelligent�
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tools requires a signi�cant amount of programming.

5.3.3 Using metric information

When we described the basic interaction model in the previous section, we con-
centrated on incidence constraints, because they are particularly easy to de�ne
and rede�ne using a drag-and-drop interface. When we deal with metric informa-
tion, such as distances and angles, things get more complicated. The user should
be able both to measure distances and angles and to place constraints on them
interactively. In particular, it should be easy to copy a distance or angle from
one part of a drawing to another, i.e. to say �make this angle equal to that one�.
When a metric constraint is speci�ed, it must be made clear which of the objects
involved the user wants to update in order to satisfy the constraint.

The dependency graph nodes needed to represent measurements and metric
constraints were discussed in Section 5.2.7. In this section, we will concentrate
on the user interaction aspects.

Figure 5.31 on page 125 showed how an angle is displayed in an Cartesian
view and how it is represented in the dependency graph. But how was the Angle
node created in the �rst place? The simplest way to de�ne an angle is to use the
measurement tool, as shown in Figure 5.44. With the measurement tool active
and the cursor over l1, we get the feedback shown in Figure 5.44a. We accept
by pressing the mouse button, and with the mouse button down we move the
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Figure 5.43. If the user were allowed to attach l1 to p3, a cycle would be created in the

dependency graph.
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Figure 5.44. Measuring angles.

cursor to l2 (Figure 5.44b) and release the button (Figure 5.44c). It is at this
moment that the Angle node in Figure 5.31b is created. The small circular arc
and the angle value are placed close to the intersection point. It is important
on which side of the intersection point the mouse button is pressed and released.
Figures 5.44d-f shows how to measure the complement angle.

In Figure 5.32 on page 126, a constraint was placed on the position of a line
m2 making ]l1l2 = ]m1m2. Thus, the position of m2 was determined by the
three other lines. Such a constraint can be created in two steps, starting from
two pairs of free lines, as shown in Figure 5.45. First, the angles ]l1l2 and
]m1m2 are measured using the measurement tool (Figures 5.45a-f). Then, with
the measurement tool still active, the arc representing ]l1l2 is dragged onto the
arc representing ]m1m2 (Figures 5.45f-h). When the mouse button is released in
Figure 5.45g, the measurement tool converts the FreeLine node representing m2

to a LineWithAngle node. Then, if any of the lines l1, l2 or m1 is dragged, m2

will be updated (Figures 5.45i-j).

If m2 had been a LineOnOnePoint, then it would have been converted to a
LineOnPointWithAngle instead. However, if it had been a LineOnTwoPoints, the
position of the line would already have been completely determined and therefore,
the arc representing ]m1m2 would not have been an acceptable drop target.

Note that the drag-and-drop operation in Figures 5.45f-g restricted the po-
sition of m2, not that of m1. This was due to the way ]m1m2 was de�ned in
Figures 5.45c-d. Because m2 was selected after m1, the subsequent drag-and-drop
operation modi�ed the constraints of m2. In fact, identifying the target node is
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Figure 5.45. Copying an angle. Legend: FL=FreeLine, M=Metric, A=Angle,

LWA=LineWithAngle.
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Figure 5.45. Continued.
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the main reason why constraints must be speci�ed by dragging angles onto angles.
For example, if we were allowed to drop ]l1l2 directly onto the intersection of m1

and m2, it would not be clear whether we wanted to restrict the position of m1 or
m2. Furthermore, it would not be clear which of the two complementary angles
we wanted to equal ]l1l2. Constraints involving distances are de�ned in a similar
manner.

So far, we have not mentioned where the Metric nodes in the dependency
graph come from. In general, when we measure distances and angles in a Cartesian
view (Section 5.3.1) we want the numerical values to match what we actually see
on the screen. If an angle between two lines appears to be 45 degrees, the displayed
angle value should read 45. If the distance between two points is 5.5 cm on the
screen, the distance value should read 5.5. To accomplish that, the system must
choose a Euclidean metric which matches the view we are looking at. The in�nity
line of the metric has to coincide with the in�nity line of the view, and the unit
distance de�ned by the metric much match the unit distance of the screen.

However, the situation is complicated by the fact that the user is allowed to
create more than one view. The view coordinate systems are related by projectiv-
ities that do not have to be Euclidean isometries (Section 5.3.1). Consequently,
an angle or a distance will not be the same in all views. Furthermore, a Poincaré
view is usually associated with an hyperbolic metric whose absolute conic coincides
with the circumference of the Poincaré disc.

Thus, each view is associated with a di�erent metric, and it will not be possible
to associate a given Angle or Distance node with a single numerical value. For
this reason, Angle and Distance nodes have been designed not to compute a value
until another object asks for it. At that point, the requesting object will specify
the metric in which to measure the angle or distance. In this way, a view can
obtain and display the angle and distance values that correspond to the intrinsic
metric of that particular view. Hence, the dependency graph in Figure 5.45 is
obviously simpli�ed. The Angle node has in fact no single, �xed Metric parent
node. Instead, the metric is provided by the context.

α = 90

β = 90

(a)

β = 90

α = 45

(b)

Figure 5.46. Two di�erent projections of the same angles.

The fact that di�erent views are associated with di�erent metrics is not a big
problem as long as we only perform measurements. The system just has to make
sure that the numerical values displayed in each view have been computed in the
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appropriate metric. However, when we de�ne metric constraints, we must choose
a speci�c metric. For example, two angles that are equal in one metric might not
be equal in another. To see that, consider Figures 5.46a and 5.46b which show
two di�erent views of a drawing which consists of four lines. The views are related
by a projectivity T which rotates the Euclidean plane in R3 around the horizontal
x-axis4. Evidently, α is a�ected by T while β is not. This shows that it is not
possible to establish a simple relationship between angles and distances measured
in (a) and angles and distances measured in (b), even if we know the projectivity
T . We cannot, for example, say that an angle of 90 degrees in (a) corresponds to
an angle of 45 degrees in (b). The relation between the angles in the two views
is determined not only by T , but also by the position and orientation of the lines
involved. Therefore, a metric constraint will in general hold in only one view. For
example, we may require that α = β in Figure 5.46a in which case α 6= β in (b),
or we may require α = β in (b) in which case α 6= β in (a).

By default, the system makes sure that a constraint is satis�ed in the view in
which it was de�ned. For example, if the drag-and-drop operation in Figures 5.45f-
h was carried out in a view V , the Metric parent of the resulting LineWithAngle
node will be the metric associated with V . When the position of the line needs
to be updated, the LineWithAngle will ask the Angle node for an angle value
computed in that particular metric.

Although there is a natural metric associated with every view, the user can
override it. Actually, di�erent types of metrics and views can be combined freely.
That is emphasized by the fact that the basic type of view, which has straight,
orthogonal x and y axes, is called Cartesian, not Euclidean. It is perfectly possible
to study hyperbolic geometry by combining a Cartesian view with a hyperbolic
metric. On example of this is given in Section 6.4.1.

5.3.4 Visual representation of objects with complex coor-

dinates

Consider again the construction of the polar line shown in Figure 5.1, page 81. As
described in Section 4.8, the tangent lines will become conjugate complex if the
point p is in the interior of the ellipse, provided that the ellipse is de�ned by an
equation with real coe�cients (i.e., its coe�cient matrix C is real). The tangent
points q1 and q2 will also become conjugate complex but the polar line, q1 × q2,
will remain real.

To our knowledge, no other dynamic geometry system can handle complex
solutions to these equations. Usually, a polar line constructed in this way simply
disappears when the point p is dragged into the ellipse. In contrast, pdb can
not only perform complex arithmetic, but also visualize points and line whose
coordinates are complex. Figure 5.47 shows what happens in pdb when p is
dragged into the ellipse. In (c) the two tangent lines t1 and t2 and the two
tangent points q1 and q2 are gray5, which indicates that their coordinates have

4We are here referring to the standard R3 embedding discussed in Section 4.1.
5On a color screen, they would typically be drawn in red.
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Figure 5.47. The polar of a point p with respect to a conic.

become complex. However, the line between the images of q1 and q2 is still black,
which shows that the polar line is real.

Note that the tangents t1 and t2 in Figure 5.47 are at all times incident both
with the conic and with the point p. However, when the coordinates of the
tangents become complex, it is not possible to faithfully visualize these incidences
on paper or on a computer screen; the lines are part of the complex projective
plane which has four real dimensions, while a sheet of paper only has two. One can
imagine that t1 and t2 in Figure 5.47c are �oating in front of or behind the paper
and that the gray lines is the result of a projection from the complex projective
plane onto the real one.

We will refer to the gray lines in Figure 5.47c as the real images of the cor-
responding complex lines. The homogeneous coordinates of the real image of a
complex point or line a + ib, a, b ∈ R3 are given by

f(a + ib) = a + kb

where k is a real number. Why choose this particular function f? First, f should
be the identity function if the argument is real. We can easily see that if b = 0,
then f(a + ib) = f(a) = a. Second, f should be continuous so that the images do
not jump if the underlying, complex points and lines are moved slightly. Again,
it is evident from the de�nition above that f has this property.

We would also like f to preserve as many incidence relationships as possible.
For example, if p is a complex point and l a complex line, it would be nice if the
real image of p would be incident with the real image of l if and only if p were
incident with l, i.e.,

f(p)T f(l) = 0 ⇔ pT l = 0

The following argument shows that it is not possible to �nd such a function. Let p
and q be two arbitrary but distinct complex points. Choose any line l on p which
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is not on q. If the equivalence above holds, f(p)T f(l) = 0 and f(q)T f(l) 6= 0,
hence f(p) 6= f(q). Therefore, p 6= q ⇒ f(p) 6= f(q) and f must be 1-1. On the
other hand, f(f(p)) = f(p) since f(p) is real and f is required to be the identity
function for real vectors. Since f is 1-1, f(p) = p. But that is not possible since
p was assumed to be complex and f(p) must be real.

Nevertheless, we can require that a real point on l should be incident with the
real image of l. That is, if p is real and pT l = 0 then we require that pT f(l) = 0.
As we saw in Section 4.14, a complex line l = u + iv, u, v ∈ R3, only has one real
point, u× v. Let p be that point. When applying f to both p and l, we get

f(p)T f(u + iv) = pT (u + kv) = pT u + kpT v = (u× v)T u + k(u× v)T v = 0

Thus, the image of p is incident with the real image of l. Because of duality,
a real line on a complex point p will be incident with the real image of p. In
Figure 5.47c, for example, the image of t1 is not incident with the image of q1

since both t1 and q1 are complex. However, p is incident with the images of t1
and t2, and the polar line is incident with the images of q1 and q2 since both p
and the polar line are real.

However, the mapping f cannot preserve the incidence relationship between a
complex point p = a + ib and a real conic. If p is on the conic, we have

pT Cp = (a + ib)T C(a + ib) = (aT Ca− bT Cb) + i(aT Cb + bT Ca) = 0

and thus

aT Ca− bT Cb = 0 (5.17)

aT Cb + bT Ca = 0 (5.18)

If we insert f(p) into the same equation we get

f(p)T Cf(p) = (a + kb)T C(a + kb) = 0 (5.19)

If, for simplicity, we choose k = 1 and use eq. 5.17 and 5.18 , the left-hand side
of eq. 5.19 can be written

f(p)T Cf(p) = aT Ca + bT Cb + bT Ca + aT Cb = 2aT Ca

which will not be zero in general. The same applies to complex lines and real
conics. This is of course obvious from the drawing in Figure 5.47c. If p is inside
the ellipse, there is no way that the real images of t1 and t2 can be drawn as
tangents to the ellipse and at the same time intersect in p.

Interestingly, the function f , as de�ned above, is invariant under real projec-
tivities [Klein25]. If a, b ∈ R3, T ∈ R3×3, then

f(T (a + ib)) = f(Ta + iT b) = Ta + kT b = T (a + kb) = T (f(a + ib))

A slight problem with the de�nition of f above is that it is sensitive to the
scaling of its argument. If s is a complex scalar, p and sp represent the same point
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projectively. However, there is in general no real scalar r such that f(sp) = rf(p).
Thus, if p is scaled by a complex scalar, its real image will move. In practice,
we can prevent that by scaling p so that its homogeneous coordinate becomes 1
before applying f . That will of course not be possible for points at in�nity, but
such points will not be visible on the screen anyway.

When we draw a conic, we usually draw the real solutions to the point equation
pT Cp = 0. However, as we saw in Section 4.14, the point set of some conics
contains no real points or only a few real points. How should these conics be
displayed? One possibility is to take each complex point p = a+ib on C and simply
draw f(p). But will the resulting point set resemble a conic on the screen, i.e., is
there a real conic C′ such that f(p)T C′f(p) = 0 ⇔ pT Cp = 0? Unfortunately, the
answer is no. Let C be the imaginary unit circle x2 + y2 + 1 = 0 (Section 4.14),
which has no real points. Then C is the identity matrix and the homogeneous
point equation can be written pT p = 0. With p = a + ib we get

pT p = (a + ib)T (a + ib) = aT a− bT b + i(aT b + bT a) = 0

aT b is a scalar and thus aT b = (aT b)T = bT a. Furthermore, aT a = |a|2 and
bT b = |b|2. Since both the real and imaginary part of pT p must be zero

|a| = |b|
aT b = 0

Any complex point a + ib, where the R3 vectors a and b are perpendicular and
have equal length, is on the conic. For every real vector q, we can �nd two
perpendicular vectors a and b of equal length such that q = a + kb, where k is
a real constant. In other words, for every real vector q there is a complex point
p = a + ib on C such that f(p) = q, |a| = |b| and aT b = 0. Therefore, the set
of real images of points on C, {f(p) : pT p = 0}, contains every real vector and
cannot be the point set of any real conic.

However, we can de�ne a real image of a conic that has at least one real point.
Guided by the discussion of complex lines above, we say that f(C) = A+kB, k ∈
R is the real image of a complex conic A + iB, where A and B are real matrices.
This mapping has some of the properties that the corresponding line mapping
has. In particular, if p is a real point on C, that is, if pT Cp = 0, then p will be
incident with f(C):

pT Cp = pT (A + iB)p = 0 ⇒ pT Ap = 0, pT Bp = 0 ⇒ pT (A + kB)p = 0

since p, A and B are real. What does this mean? Assume that the user has
created a conic C on �ve real points. If one of the points is, say, the intersection
between a line and another conic, it can become complex at any time. If that
happens, C will also become complex. However, its real image f(C) will still pass
through the four remaining real points on the screen.

If C has at least one real point, so does f(C), and since f(C) is real, it has
in�nitely many real points. Therefore, f(C) can be drawn as a ordinary, real
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conic. However, f(C) can be degenerated even though C is proper. Actually,
f(C) = A + kB is a linear combination of two real matrices, both of which
may be degenerated. Since C is a complex, A and B are linearly independent
(Section 4.14.2). Hence, A + kB represents a pencil of real conics, and every
member of that pencil passes through the four (possibly complex) points where
A intersects B. If C is proper, we can choose a k such that f(C) is a proper real
conic. Conversely, if C is degenerated, we can choose a k which makes A + kB
degenerated.

Since objects with real and complex coordinates are displayed di�erently, the
system must check whether the coordinates of an object are real or not before
drawing it on the screen. Because of round-o� errors, it is not meaningful to test
whether the imaginary part is exactly zero. Instead, pdb uses simple thresholding.
A complex number a + ib, where a, b ∈ R, is considered real if

| b
a
| < θ

where θ is a small real constant. A numerical test is of course unreliable. If θ is
too small, a coordinate which theoretically is real might be classi�ed as complex.
Actually, that could happen even with a large threshold because round-o� errors
can accumulate in complicated drawings. The outcome of the test will not a�ect
the position of the object on the screen. Since f is continuous and has no e�ect on
real vectors, we can safely apply it to the coordinates of every object. However,
objects with complex coordinates are displayed in a di�erent style and/or in a
di�erent color to show that they are not in the real plane. If a numerical test is
used, small round-o� errors may cause the color of the object to �icker, which can
be very annoying. The only completely satisfactory solution is to use symbolic
methods for determining whether the coordinates of an object are real or not.
A number of proof engines that might be useful in this context are presented in
[Kutzler86, Wu86, Richter-Gebert95].

5.3.5 Working with complicated drawings

One thing that a user of a dynamic geometry system will soon discover is that
drawings quickly become very complicated and may very well contain more than
a hundred objects. Such drawings are hard to interact with because of the clutter
they generate on the screen. Text labels may help to identify the objects, but
too many labels just make the clutter worse. Apart from the problem of telling
which object is which, it is di�cult to pick an object if it is close to or obscured
by other objects. The user interface of pdb has several features which help the
user to handle complex drawings.

First, the objects in a view have a speci�c stacking order. Lower-dimensional
objects, such as points, are always on top of higher-dimensional objects such as
lines and conics. That makes it possible to pick points that are close to lines.
When several points are displayed on top of each other, the user can change the
stacking order.
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(a) (b)

Figure 5.48. The images of six lines are selected and removed from the view. The line

objects themselves are not destroyed.

Second, a view may show a subset of the objects in a drawing. If a view
shows too much detail, the user can either hide some of the objects or create a
new view which shows fewer objects. In Figure 5.48a, which illustrates Pascal's
theorem, the user has just selected the six auxiliary lines and is about to apply
Edit→Delete Image. In Figure 5.48b the line images have disappeared, but the
images of the intersection points remain. Removing the image of a shape in a
view will not delete the underlying object in the drawing. Actually, a node in
the dependency graph will not be deleted as long as some other node depends
on it (directly or indirectly), or there exists an image of it in some view. In
Figure 5.49a, the user instead selects the conic and the three intersection points,
and then applies File→New Cartesian View. A second view is created, in which
the images of the selected objects are shown (Figure 5.49b).

(a) (b)

Figure 5.49. The conic and three of the points are selected. A second view which shows

only these objects has been created in (b).

Third, as we mentioned in Section 5.3.2, the currently active tool continuously
monitors what is under the cursor and only highlights objects that it can act upon.
Other objects are ignored. For example, in Figure 5.50 a label and an arc which
represent an angle are partly obscured by several lines. This makes it di�cult to
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43
copy this angle

JJ

Figure 5.50. If the measurement tool is active, the lines obscuring the angle symbol will

be ignored which makes it easy to select the angle.

select the angle for an operation. However, if the measurement tool is activated,
the angle will always be given priority, which is indicated by cursor text.

Finally, dependency views make it easy to select the right objects. Figure 5.51a
shows a conic de�ned by �ve points. An additional point has then been attached
to the conic. Suppose that we want to create a tangent to the conic through this
sixth point. How do we �nd it? We could drag each of the points in turn, and
look for the one that does not a�ect the shape of the conic. However, it is much
easier to bring up the dependency view shown in Figure 5.51b. If we click on
the point that depends on the conic, the corresponding point will be highlighted
in the Cartesian view, and we can de�ne the tangent through it (Figure 5.51c).
Alternatively, we could select the conic and the sixth point in the dependency
view and directly select the Macro→Line on Conic and Point menu item.

5.3.6 Macros

pdb's built-in tools make it easy to perform simple operations, such as creating a
single object or adding an incidence constraint. The tools were designed to make
that kind of interaction as smooth and intuitive as possible. However, creating
large drawings with dozens of objects using only the built-in tools can be tedious.
The user will �nd himself making the same basic constructions, such as angle
bisectors and polar lines, over and over again. To alleviate that problem, the
user can de�ne macros for often-needed constructions. pdb macros are written
in Tcl (Tool Command Language) [Ousterhout94]. The Tcl interpreter has been
extended with functions that gives the user full access to all the internal data
structures in pdb. The choice of macro language and its integration with the pdb
kernel will be discussed in Section 5.4.3. Here, we will describe how macros are
de�ned and invoked by the user.

The easiest way to create a macro is to save a part of an existing drawing as a
macro. pdb then generates Tcl code which will repeat the construction each time
it is executed. If necessary, the Tcl code can be modi�ed in a text editor. The
macro can also be written from scratch.

Consider the polar line construction illustrated in Figures 5.52a-h. To save
this construction as a macro, we select the arguments (or input objects) of the
macro, in this case the given point and the conic, and invoke File→Create
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(a)

FreePointFreePointFreePointFreePointFreePoint

ConicOnFivePoints

PointOnOneConic
JJ

(b)

line on this point

JJ

(c)

Figure 5.51. Sometimes it easier to choose the operand in a dependency view.
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this point

JJ

(h)

Figure 5.52. Constructing the polar of a point in pdb.



152 Chapter 5. Designing a dynamic geometry system

JJ

(a) (b)

Figure 5.53. Creating a polar line macro.

Macro (Figures 5.53a-b). The Create Macro function generates Tcl code which
will recreate all objects that depend directly or indirectly on the input objects.
Other objects that are necessary for the construction will also be recreated by the
macro6. The macro is stored in a plain text �le, the name of which is speci�ed
by the user. The user may also choose a macro name, such as Polar. The macro
will immediately be added to the Macro menu under the speci�ed name.

(a) (b) (c)

Figure 5.54. Applying the polar line macro.

Figure 5.54 shows how the polar line macro is used. A conic and a point are
selected and Macro→Polar is invoked. Note that the macro has made the tangent
lines and the tangent points visible in Figure 5.54c. This is because they were
visible in Figure 5.53 when the macro was saved. If we had made these objects

6To be more speci�c, let S be the set of objects which depend on the macro arguments. As
long as there is an object x ∈ S which depends on an object y 6∈ S, and there is a path from y
to x in the dependency graph that does not pass through one of the macro arguments, y will be
added to S. The resulting set S will be recreated by the macro.
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invisible before invoking File→Create Macro, they would have been invisible in
Figure 5.54c too.

free point

here

JJ

(a)

conic on

these points

JJ

(b) (c) (d)

Figure 5.55. Creating a circle macro.

pdb_get_selection $drawing_id Point 3 points

lappend points [Point::create $drawing \

[FreePoint::create {0.66 0.75 0.0058}]]

lappend points [Point::create $drawing \

[FreePoint::create {0.15 0.99 0.0073}]]

set conic [Conic::create $drawing \

[eval ConicOnFivePoints::create $points]]

View::create_image $view $conic

Figure 5.56. A macro that constructs a conic on �ve points.

Sometimes it is necessary to edit a saved macro. For example, suppose we want
to de�ne a macro which creates the Euclidean circle through three given points.
As explained in Section 4.12.3, all circles in Euclidean geometry pass through
the two circular points I and J whose coordinates are (i, 1, 0)T and (−i, 1, 0)T ,
respectively. Therefore, to de�ne the circle, we can use the built-in conic tool
to create a conic on �ve points, then replace two of the points with I and J .
Figure 5.55 shows how to proceed.

First, we create �ve arbitrary points, using the point tool (Figure 5.55a).
Then a conic on these points is de�ned by the conic tool (Figure 5.55b). Since the
macro will eventually be applied to only three points, we select three of the points
and invoke File→Create Macro (Figures 5.55c-d). The three selected points in
Figure 5.55c are the macro arguments and are assumed to be available when the
macro is invoked. The two remaining points and the conic will be recreated by
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pdb_get_selection $drawing_id Point 3 points

lappend points [Point::create $drawing \

[FreePoint::create {{0 1} 1 0}]]

lappend points [Point::create $drawing \

[FreePoint::create {{0 -1} 1 0}]]]

set conic [Conic::create $drawing \

[eval ConicOnFivePoints::create $points]]

View::create_image $view $conic

Figure 5.57. The modi�ed macro which constructs a circle on three points.

(a) (b) (c)

Figure 5.58. Applying the circle macro.

the macro. Figure 5.56 shows the resulting Tcl code7. The arguments of the two
FreePoint::create calls in Figure 5.56 are then replaced by the coordinates of
I and J , as shown in Figure 5.57. (In Tcl, a complex number 1 + 2i is written
{1 2}.) Now the macro is ready to be used. In Figure 5.58a, three points have
been selected, and in Figure 5.58b the macro is invoked. The result is shown in
Figure 5.58c.

For convenience, a few elementary geometric constructions in Euclidean ge-
ometry are supported by a pdb macro package:

• The midpoint of a line segment

• The perpendicular bisector of a line segment

• Angle bisection

• Circle about a given center passing through a given point

7The code has been shortened to save space.
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5.4 System design

5.4.1 Design principles and the use of object-oriented tech-

niques

pdb was designed to be an open-ended system, a system which allows new types
of shapes and constraints to be added later on. Also, portability has been a
primary concern. The system currently runs under UNIX and XWindows, but a
Windows95 version is planned. High performance was a very important design
goal. On of the main points of writing specialized dynamic geometry software
is that we can achieve a response time that cannot be match by general-purpose
systems (Section 1.5).

To obtain a satisfactory design, we decided to apply object-oriented principles
and to concentrate on the design of the interfaces. We have tried to identify
and isolate the parts of pdb that are most likely to be changed or extended in
the future. In particular, all platform-dependent parts, such as the underlying
windowing system, have been encapsulated. On the other hand, we have been
very careful not to create ine�ciencies by introducing unnecessary interfaces or
software layers.

The structure of the system and the responsibility of di�erent classes will
be discussed in the following sections. We will use UML diagrams [Booch99]
to illustrate class relationships and object interactions, and we will point out the
design patterns [Gamma95] that have been employed. The choice of programming
language will be discussed in Section 5.4.3.

5.4.2 Main packages

pdb consists of three main packages: the kernel, the user interface (UI), and the
windowing system interface (WSI), see Figure 5.59.

• The kernel handles all geometric computations. It maintains the depen-
dency graph and makes sure that the constraints on the geometrical objects
are satis�ed at all times. It communicates with the UI package in order to
keep the views updated and consistent. However, the kernel is largely inde-
pendent of the UI package and could therefore be used in any application
program which needs to perform geometrical computations.

• The UI package is responsible for maintaining the views, for responding to
user actions, and for �le management. The UI package creates the windows,
buttons and menus comprising the user interface and provides the necessary
event handlers. Whenever a geometric object on the drawing board, such as
a line, is dragged or manipulated by the user, the UI package asks the kernel
to compute new positions of all objects. In order to render a drawing, the
UI package relies on the graphics support provided by the WSI package.

• The WSI package encapsulates the underlying windowing system, for exam-
ple XWindows [Quercia93] under UNIX. A part of the package consists of



156 Chapter 5. Designing a dynamic geometry system

a windowing toolkit, Tk [Ousterhout94], which implements common graph-
ical components such as frames, buttons, menus, scrollbars etc. The WSI
package also provides a thin, application-speci�c interface to the windowing
system which allows the UI package to draw almost directly into a physical
window, without using the rather resource-consuming Tk toolkit. This in-
terface provides exactly the set of graphical primitives necessary for the UI
package to render the contents of the drawing board.

The WSI package shields the UI package from the windowing system. If
pdb is ported to a new windowing system, only the WSI package will be
a�ected. Since the Tk toolkit already runs on all major platforms, only a few
application-speci�c classes in the WSI package need to be reimplemented.

pdb

Geometric kernel

User interface (UI)

Windowing system
interface (WSI)

Concrete windowing

system

Figure 5.59. pdb consists of three main packages.

5.4.3 Choosing an implementation language

Since a short response time was a primary design goal, we needed an implementa-
tion language for the pdb kernel with strong type checking, global optimization,
and in-line expansions of functions. Since the system is object-oriented, C++
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[Stroustroup97] was a natural choice. The language also allows us to control the
memory management in detail and to make sure that time-consuming garbage
collection does not take place during user interaction.

Other implementation languages were considered, in particular Java [Arnold98].
Actually, a number of dynamic geometry demonstrations have been implemented
in Java and are now available on the net [Geometry-Center98]. Cinderella Café
(Section 2.3) has been written completely in Java, possibly because an earlier ver-
sion was written in Objective-C, a language which in many respects is similar to
Java. The Java language has many advantages; the run-time support is excellent,
there are standardized toolkits for building graphical user interfaces, and Java
programs can be run on most platforms with few compatibility problems. How-
ever, judging from existing Java programs, there seems to be a signi�cant speed
penalty, which cannot easily be overcome by byte-code conversions or just-in-time
compilation. A slow response can be observed in all dynamic geometry systems
implemented in Java, including Cinderella Café. Interestingly, the Smalltalk lan-
guage [Goldberg83], from which Java has borrowed many ideas, seems to su�er
from the same slowness, although its virtual machine and low-level libraries have
been improved and optimized over the last twenty years. We believe that the
users of pdb will be more interested in computational speed than in portability,
and therefore, we decided not to use Java.

Sooner or later, users will need to make geometrical constructions that are not
directly supported by the pdb kernel. In that situation, one option is of course to
extend and recompile the kernel. However, that would not be practical for several
reasons:

• The source code of pdb might not be available.

• The compilation time would be signi�cant.

• Extending the kernel would involve advanced programming in C++, a lan-
guage well-known for its steep learning curve.

Therefore, a special language for writing macros is available in pdb (cf Sec-
tion 5.3.6). The macro language o�ers access to every function and data structure
in the pdb kernel and in the UI package, but the language is interpreted and easier
to use than raw C++.

The importance of having a macro language in a dynamic geometry system
has frequently been pointed out, and most other geometry systems have some sort
of macro facility. Instead of inventing yet another macro language, we decided to
use a good, general-purpose scripting language and extend it with new commands
for accessing the pdb C++ core. Obvious candidates were Perl [Wall96] and Tcl
[Ousterhout94]. Since Tcl comes with the very nice, portable graphical toolkit
Tk, we �nally chose Tcl. The integration of Tcl and Tk allowed us to write most
of the UI package in Tcl rather than in C++, which made the code very compact
and easy to modify. Only the time critical parts, such as geometric computations
and part of the event processing code, have been implemented in C++.
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The main disadvantage of having two di�erent languages in the same system is
that many data structures and functions must be accessible from both languages
and we must therefore de�ne an interface between them. A Tcl interpreter can be
extended with new, custom commands implemented in C or C++. Once the new
commands have been installed into the interpreter, they cannot be distinguished
from the built-in ones. However, before a C++ function can be called, the argu-
ments must be converted from the Tcl data types to C++ objects, and when the
function returns, the return value must be converted back to a Tcl data type. The
conversion code is usually written by hand, a very tedious and error-prone task.
For a library as large as pdb, hand-written code is not an alternative. Instead, we
have developed a new system, TIDE [Winroth98], which automatically generates
a Tcl/C++ interface from abstract description of the C++ functions. The prob-
lem of accessing object-oriented C++ libraries from a scripting language, andthe
design and implementation of TIDE are discussed in Appendix A.

5.4.4 Type hierarchy

The dependency graph (Section 5.1.3) is a directed, acyclic graph, consisting of
nodes and arcs. Although the nodes typically represent concrete objects such
as points and lines, no assumptions about the meaning or the contents of the
nodes are made in the part of the code that manages the graph. If there is an
arc between two nodes n1 and n2, it simply means that n2 somehow depends
on n1. Whenever the internal state of n1 (typically the coordinate of the object
which n1 represents) is changed, all nodes which depend directly or indirectly on
n1 are informed and given a chance to update their internal data structures. To
speed up this process, each node contains a precomputed partial ordering of all its
dependent nodes. The node initiating the updating sequence uses this ordering
to make sure that each dependent node will be updated exactly once and only
after all its parent nodes have been updated. The sole purpose of the Node base
type is to de�ne this protocol (Figure 5.60).

*
*

Node
parent

child

depends on I

Figure 5.60. The directed, acyclic dependency graph consists of nodes.

Most of the nodes in the dependency graph will represent objects such as
points, lines, conics, angles and distances. These objects are called viewables

because they have a graphical representation (one or several images) on the screen.
A viewable must make sure that all its images are updated whenever its internal
state is changed, and it must specify what should happen if one of its images is
dragged by the user. The image updating protocol and the drag-and-drop protocol
are de�ned by the Viewable type, which is a subtype of Node (Figure 5.61).
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{incomplete}
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Figure 5.61. A part of the Node type hierarchy.

Certain nodes have no representation on the screen, i.e., they have no images.
For example, there are nodes which just compute the roots of certain equations
and cache the result. Such nodes are important for minimizing the number of
times an equation has to be solved. They are represented by node types de-
rived directly from the Node base type, e.g. PointConicLineIntersection in
Figure 5.61.

As explained in Section 5.1.3, most of the nodes in the dependency graph
represent a combination of a geometric object (point, line or conic) and a set of
constraints on that object. For example, there are nodes representing free points,
points attached to a line, and points attached to the intersection of two conics.
If these di�erent kinds of points were represented by di�erent types of nodes, a
node would have to be able to change its type at run-time since constraints can
be added and removed dynamically by the user (Section 5.3.2). However, the
type of a C++ object cannot be changed once it has been created. We have
therefore been forced (for implementation reasons) to split each of these nodes
into two parts. The �rst part is the actual node, which is one of Point, Line
or Conic. These three node types are all derived from Shape, which in turn
is derived from Viewable. The second part, which represents the constraints,
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is called the controller and is a replaceable part of the node (see Figure 5.61).
All controllers, such as FreePoint, PointOnOneLine and PointOnTwoConics, are
derived from a common Controller base type. A Shape node will delegate a
number of operations to its controller, which normally implements at least the
updating and drag-and-drop protocols. Structurally, it can be seen as a Brige
pattern [Gamma95]. However, the Shape object is con�gured with a certain
controller by other objects, so the controller is not completely hidden inside the
Shape class. From a behavioural viewpoint, the shape-controller cooperation can
be seen as an instance of the Strategy pattern.

Nodes representing angles and distances do not need controllers since there
are no constraints associated with angle and distance measurements. The node
types Angle and Distance are therefore derived directly from Viewable.

l : Line

: CartesianLineImage

: PoincareLineImage

: DependencyImage

(a)

l

l
l

(b)

Figure 5.62. The Line object is linked to three Image objects (a) which visualize the

Line in three di�erent ways (b).

As mentioned above, there can be one or several images in di�erent windows
associated with each viewable. The image type de�nes how the contents of a
node will appear on the screen. For example, in the object diagram shown in Fig-
ure 5.62a, a Line object which represents a line l is associated with three di�erent
images: a CartesianLineImage, a PoincareLineImage and a DependencyImage.
Each type of image gives l a di�erent appearence. The CartesianLineImage

draws l as an ordinary, straight line, the PoincareLineImage draws l as a circu-
lar segment, and the DependencyImage displays l as a box (Figure 5.62b). An
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CartesianLineImage

PoincareLineImage

CartesianPointImage

PoincarePointImage

DependencyImage
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Figure 5.63. A part of the Image type hierarchy.

image and its corresponding node communicate through an interface which is de-
�ned by an abstract Image type. The Image type also has a protocol for handing
user actions, such as drag-and-drop operations. Figure 5.63 shows part of the
image class hierarchy.

*1 1*View

DependencyView

PoincareView

CartesianView

Image

Node

Viewable

Figure 5.64. The relationship between views, viewables and images.

A view is basically a window in which a drawing or a part of a drawing is
visible. It is represented by a View instance which creates and manages the
physical window on the screen. Each Image object is associated with exactly one
view and will display itself in the window belonging to that view (Figure 5.64).
A viewable can have at most one image in each view, i.e. every image in a
certain view belongs to a di�erent viewable. Furthermore, all images in a view
must be compatible with the view. For example, a CartesianView can only
contain images of type CartesianPointImage, CartesianLineImage etc, while a
DependencyView can only display DependencyImage instances. In Figure 5.65, a
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: CartesianView

: CartesianPointImage

: CartesianLineImage

p : Point

l : Line : DependencyImage

: DependencyImage

: DependencyView

(a) The object diagram.

p

l

p

l

(b) The two views as they appear on the screen.

Figure 5.65. A line and a point and their images.

point p and a line l have two images each which are associated with two di�erent
views. The object diagram is shown in (a) while (b) shows the two views as they
appear on the screen.

Upon request, a view will create the appropriate type of image for each type
of viewable. Thus, a View acts as an Abstract Factory [Gamma95] for its Image
objects. Since the type of image to be created depends on both the type of
viewable and the type of view, multiple dispatch is required to invoke the appro-
priate factory function. Because C++ only supports single dispatch (using what
is called virtual functions), the image creation logic has been implemented as a
Vistor pattern [Gamma95].

All references to the nodes in the dependency graph are counted. A node
is guaranteed to exist as long as other nodes in the graph depend on it, or as
long as there are images of the node in some view (the latter applies of course
only to Viewable nodes). This means that a node will not be removed until it is
impossible to reach it or interact with it. For example, the macro for constructing
a circle on three points (Section 5.3.6) creates two auxiliary nodes which represent
the absolute points I and J . These points will not be visible, but they will be
kept alive as long as the circle exists. When the last image of the circle is deleted
by the user, the circle and the auxiliary points will be removed automatically.

A drawing consists of a dependency graph (the nodes and its connections),
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pdb Drawing File

Node

Viewable Image View

Figure 5.66. The structure of a pdb drawing.

and a set of views. A single pdb invocation can handle several drawings at the
same time, but the drawings are isolated from each other. A drawing is also a
unit that can be saved to �le (Figure 5.66).

1 1 1 1 1*

*

1

*1

1

*

View

Image

Canvas

CanvasItem

PointItem PolylineItem ArcItem TextItem

Window Windowing system

system dependent

{incomplete}

Figure 5.67. The Canvas and CanvasItem types hide the underlying windowing system.

As mentioned above, a view is associated with a physical window. The Image
instances which belong to the view are responsible for making themselves visible
in that window. In order to shield the view and the images from the details of
the underlying windowing system, a physical window is represented by a Canvas

instance, and an Image may create one or several CanvasItem instances in that
canvas. A canvas item is a graphical primitive, typically a point, polyline or
text item (Figure 5.67). The Canvas and CanvasItem classes provide an ab-
stract interface to the windowing system. The implementation of the Canvas and
CanvasItem interfaces are provided by hidden, system-dependent classes using a
Bridge pattern [Gamma95].

A CanvasItem will redraw itself (e.g. when an obscured window becomes
visible again) once it has been created � the Image object is not be responsible
for doing that. Also, the properties of a CanvasItem (color, stacking order, etc)
may be queried and changed. However, clipping operations are performed at
the Image level since that will usually be more e�cient. For example, to draw
a conic, one can compute a polygon approximation and clip each line segment
in the polygon to the visible part of the window. However, it is usually faster
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to clip the conic itself to the window and then for each visible conic segment
compute a polyline approximation which can be drawn without further clipping.
Thus, instead of having a CartesianConicImage object create a single set of line
items representing the entire conic, the CartesianConicImage object will create
serveral smaller sets of line items which only represent the visible parts of the
conic.

5.4.5 Event processing

An event is a record generated by the windowing system to inform an application,
in this case pdb, that something potentially interesting has occurred. For example,
whenever the user moves the mouse or presses a button, an event will be generated.

As explained in Section 5.4.3, most of the objects comprising the graphical user
interface, in particular all menus, buttons, scrollbars etc., are part of the Tk toolkit
and controlled by Tcl code. Events associated with these objects will therefore be
processed by the Tcl interpreter. The Tcl event processing model is very �exible
and the event bindings can be changed or extended without recompiling pdb.

Although the Tcl scripts are slower than the corresponding C++ code, they
are su�ciently fast to handle events that do not occur too often, such as menu
selections. However, events that occur frequently and require heavy geometrical
computations are handled by C++ code. For example, if the user drags a point
object on the drawing board, then for each pixel that the mouse is moved, the
images of the point and all objects depending on it must be updated in all views.
This will be done without any involvement of Tcl/Tk.

p

q

(a)

p

q

(b)

Figure 5.68. Two views of the same drawing.

Let us look at a speci�c event, see how it is processed and what classes are
involved. Figure 5.68 shows two views of a drawing which consists of a line l
attached to two points p and q. The corresponding object diagram is shown in
Figure 5.69. The two points, the line, and their controllers are found at the
bottom of the object diagram. The two points and the line have two images each
which in turn are linked to two di�erent views.

Assume that the user has picked the point p in view (a) in Figure 5.68 and
starts dragging it. Each motion event reported by the windowing system generates
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: Window: Window

: Canvas: Canvas

: View: View

: EventHandler: EventHandler

: CartesianPointImage

: CartesianPointImage

: CartesianPointImage

: CartesianPointImage

: CartesianLineImage: CartesianLineImage

p : Point q : Point: Line

: FreePoint : FreePoint: LineOnTwoPoints

Figure 5.69. The object diagram corresponding to Figure 5.68.

a cascade of operations in the pdb object structure, as the object collaboration
diagram in Figure 5.70 shows. First, the motion event is passed to the event
handler for view (a). The event handler knows that p has previously been picked
and interprets the motion event as a dragging operation on p. It therefore asks the
Image object which represents p in view (a) (in this case a CartesianPointImage)
to follow the cursor by invoking the drag operation on the Image. Depending on
the constraints that have been placed on p, the Image object may not be able to
meet this request. The drag call is therefore forwarded to p, the Point object
representing p, which in turn passes the request on to its controller, in this case a
FreePoint controller. Since p is a free point, the controller allows it to change its
position. Because the position of the point is physically stored in the controller
itself, the controller calls its own update_coord method to reset it. Next, p
noti�es both its images that its position has been changed. (Only one of these
calls is shown in Figure 5.70.) The images, one in each view, respond by fetching
the new coordinates of p and redraw themselves. p also noti�es l, the Line object
representing l, about the change in position, so that it can update its position
too. The controller of l is informed and computes a new position for the line. l
then noti�es its images.

This sequence of calls will be repeated each time the cursor is moved, which
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Figure 5.70. Object collaboration during motion event processing.
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generates a signi�cant amount of computation. However, the fact that all func-
tions processing motion events have been written in C++, and that the canvases
can communicate with the underlying windowing system with very little overhead
cuts down the response time.

p

q
r

Figure 5.71. To display the scrollbars correctly, the Tcl interpreter has to know the total

extent of the dependency graph.

1 *

1

2

Tcl C++

UI

WSI

View Image

Scrollbar

bounds()

bounding_box() set_viewport()

Figure 5.72. If the View sends bounding box information directly to the scrollbar, the

View has to know the Tcl name of the scrollbar, which makes the View dependent on

Tcl.

A complication of having event handlers partly written in Tcl and partly
in C++ is that it sometimes requires bi-directional communication across the
Tcl/C++ interface. For example, the window of a DependencyView can be scrolled
using two scrollbars attached to it (Figure 5.71). Since these scrollbars are part
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Scrollbar
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TclObserver

bounds()

update()

bounding_box()

set_viewport()
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Figure 5.73. If the View instead uses an abstract Observer interface, all Tcl-dependent

code can be collected into a TclObserver class which implements the Observer interface.

The TclObserver is responsible both for fetching the current bounding box from the View

when update is called, and for passing that information on to the scrollbars.

of the Tk toolkit, the events directed to them will be processed by Tcl code. In
order to display the scrollbars and to make them operate correctly, the Tcl in-
terpreter has to know the bounding box of the images in the view, and that box
may change each time an object in the view is dragged. Since dragging operations
are handled by C++ code, a C++ event handler must make the bounding box
information available to the Tcl procedures which manage the scrollbars. The Tcl
code can then compute how to move the viewport and pass that information to
the View object, which is also implemented in C++ (Figure 5.72). Fortunately,
the TIDE interface (Appendix A) which ties the C++ and Tcl parts together can
handle such bi-directional communication. However, the problem is that in order
to make it reasonably easy to replace Tcl/Tk by some other windowing toolkit
in the furture, the C++ code should depend as little as possible on the Tcl code.
In particular, when a C++ object passes information to the Tcl interpreter, the
object should make make no explicit references to the Tcl interpreter or to the
names de�ned in that interpreter. To accomplish that, an Observer interface
[Gamma95] should be de�ned on the C++ side for each type of information that
must be passed to the Tcl interpreter. Specialized observers, which know about
Tcl names and know how to execute Tcl commands, can then be installed by the
Tcl interpreter on the C++ side (Figure 5.73). The View will then simply send
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update to its observers, and it will not have to know anything about the Tcl
interpreter.

5.4.6 The tools

Most of the user interaction in pdb is controlled by the tools introduced in Sec-
tion 5.3.2. When a tool is active, it continuously analyses what is under the
cursor and suggests a suitable action, such as creating a new object or adding a
constraint. The user con�rms the suggested action by clicking the mouse button.
The tools are the most complicated objects in pdb since they must understand
what a set of constraints that has been placed on an object means geometrically.

Using Gamma's terminology, a tool is a Strategy for its view which determines
how the view will react to user input. pdb comes with a set of prede�ned tools
for creating and modifying points, lines, conics, angles and distances. However,
additional tools can be easily installed. In this section we will brie�y describe
how a tool interacts with other objects in the system.

Each tool de�nes a filter function which, given a set of viewables (typically
the viewables currently under the cursor), returns the set of objects it can act
upon. For example, given a point and a line, the line tool would normally return
the point, since it can create a new line on that point. However, depending on
its internal state, a tool might choose to return a di�erent subset of the input
objects. For example, if the Control key is held down, the standard tools will
attempt to modify existing objects rather than creating new ones. Given a point
and a line, the line tool would then return the line if there is a constraint on the
line that can be removed. For each filter call, the tool also returns a string
describing the suggested action, e.g. "line on this point" or "detach line

from this point".

A tool is also required to support drag-and-drop actions, which are imple-
mented by three functions: pick, drag and drop. pick will usually be invoked
when the mouse button is pressed and drop when it is released. In between those
calls, drag will be called each time the cursor is moved. Typically, a new ob-
ject is created or constraints are removed by pick, the coordinates of the new or
modi�ed object are updated by drag, and �nally, new constraints may be added
by drop. Figures 5.39a-d, page 135, shows how the point tool suggests a pick,
creates a new point, drags the point into a new position and �nally adds a second
constraint to it.

Drag-and-drop operations work well as long as only one or two objects are
involved. However, some operations need several operands. For example, the
conic tool must be given �ve point objects to create a conic through �ve points.
In such cases, the tools interact with the current selection. If the user picks an
object whose type is consistent with one of the operations that the currently active
tool can perform, the object will be added to the current selection. When enough
operands have been selected, the tool will operate on them. For example, the
conic tool will create a conic as soon as �ve points or lines have been selected.
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5.4.7 File management

When a drawing is saved to �le, pdb will actually compile a Tcl program which,
when run, will recreate the drawing with all its objects and views. The main
advantage of the approach is that the pdb �les are readable by humans, and that
they can be modi�ed using a standard text editor. For example, if we would like
to make a drawing where some objects have to be given speci�c coordinates, we
could �rst create an approximate sketch, save it and then edit the coordinates in
the resulting �le. A text based �le format also makes it easy for other programs
to generate drawings that can be loaded into pdb.

For a large CAD drawing with thousands of elements, this approach would
not be appropriate, since the resulting Tcl program would be extremely long and
the load time would be unacceptable. For such massive data structures a binary
�le format would be more suitable. In order to keep the system open-ended and
extensible, one would probably use some kind of persistent object scheme, which
allows the �le format to evolve over time while maintaining backward compatibil-
ity. One such system, which gives minimal �le size overhead has been presented
in [Winroth94].

However, for small- to medium-sized drawings, the advantages of the script-
ing approach are compelling. Furthermore, since the part of pdb which saves
a drawing is also written in Tcl, it is easy to extend the information stored on
�le if necessary. In fact, the �le format can be extended by the users, without
recompiling pdb.



Chapter 6

Dynamic geometry at work

The previous chapter contained several �gures illustrating various aspects of the
user interface. However, since the discussion focused on user interaction and
the system response, most of the examples were small and rather fragmented.
One of the few complete constructions was the polar line shown in Figure 5.52,
page 151. A larger set of drawings were given in Chapter 4, most of which had
been generated by pdb. However, we gave no indication of how they had been
constructed; only the �nal output was printed.

The purpose of this chapter is to give the reader some idea of how the prop-
erties of a geometric construction can be investigated and how a geometrical
theorem can be illustrated using the pdb dynamic geometry system. In contrast
to previous chapters, we will here provide complete examples of geometrical con-
structions in pdb. We will not just show the �nal result but describe how the
drawings are actually constructed. In the �rst examples, we will lead the user
step-by-step through the construction process. However, to save space and to
avoid boring the reader, subsequent examples will be more sketchy.

Of course, there is a vast number of geometrical theorems that could be illus-
trated. We only have room for a few examples. The ones we have chosen come
from projective, a�ne, Euclidean and hyperbolic geometry. They show how the
di�erent geometries are related and at the same time they demonstrate many of
pdb's capabilities.

6.1 Examples from projective geometry

6.1.1 Poles and polars

In Section 4.8.5 we mentioned that a conic could be considered as a polarity, and
in Section 5.3.6 we showed how the polar of a point with respect to a conic could
be constructed geometrically in pdb (Figure 5.52, page 151). The construction
was saved as a macro, Polar, in Figure 5.53. There is also a standard macro
in pdb called Pole for the dual construction, the pole of a line. Let us verify
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experimentally the symmetry property discussed in Section 4.5 using these two
macros.

Given a conic C and a point p, create the polar l by selecting p and C and
applying the Polar macro (Figures 6.1a-c). Activate the point tool and create a
point q attached to l (Figures 6.1d-e). Create the polar m of q by reactivating the
selector tool, selecting q and C and applying the Polarmacro again (Figures 6.1f-
i). We can see that m is on the original point p, and it will stay on p even if p or
q is dragged (Figure 6.1j).

6.1.2 Verifying the self-polar property of the diagonal tri-

angle

In Section 4.10 we introduced quadrangles, diagonal points and diagonal triangles.
We saw that the diagonal triangle is self-polar with respect to any conic that
contains the four vertices of the quadrangle. Let us check that. We will create a
quadrangle and a conic on four arbitrary points. Then we will apply the Polar

macro to each diagonal point to verify that the corresponding polars really are
the sides of the diagonal triangle.

Activate the point tool and place four arbitrary points on the drawing surface
(Figure 6.2a). These will be the vertices of the quadrangle. Switch to the line
tool and draw the six sides of the quadrangle (Figures 6.2b-f). This quadrangle
construction might come in handy later, so let us save it as a macro. We simply
select the four base points and choose File→Create Macro (Figures 6.3a-b).

Using the point tool, attach a point to each intersection of opposite sides (sides
that do not share a vertex of the quadrangle). These three points are the diagonal
points (Figures 6.4a-b). Now, let us create the conic. Since it takes �ve points
to de�ne a conic, we place an additional point on the background. Then, with
the conic tool active, we pick the four vertices and the free point (Figures 6.5a-
c). Select the conic and one of the diagonal points and invoke the Polar macro.
Repeat that for the reaming two diagonal points (Figures 6.5d-g). As expected,
the polars form a triangle whose vertices are the diagonal points of the quadrangle.
By moving the �fth, free base point of the conic we can verify that the shape of
conic does not matter, as long as it contains the four vertices of the quadrangle
(Figure 6.5h).

6.1.3 Creating the harmonic conjugate

Each side of the diagonal triangle of a quadrangle intersects the sides of the
quadrangle in four point points, two of them being diagonal points. We saw in
Section 4.10 that the cross-ratio of these four intersection points is −1, i.e., the
points constitute a harmonic set. Let us �rst verify that. We continue to work
with Figure 6.5 and de�ne two additional intersection points on one of the sides
of the diagonal triangle, as shown in Figure 6.6a. Then we select the four points
and invoke the Cross-ratiomacro (Figures 6.6b-d). As expected, the cross-ratio
is −1. Note that the order in which the points are selected in Figure 6.6b is
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Figure 6.1. The symmetry properties of poles and polars.
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Figure 6.2. Constructing a quadrangle.
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Figure 6.4. Adding the diagonal points.
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Figure 6.5. Verifying that the diagonal triangle is self-polar.
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Figure 6.6. Verifying that two vertices of the diagonal triangle are harmonic conjugates

with respect to the conic.

important, since it will a�ect the cross-ratio. If four points are selected in the
order p1, p2, p3, p4, the Cross-ratio macro computes (p1 p2 | p3 p4).

Actually, given three collinear points p1, p2, p3 we can use a quadrangle to
construct the harmonic conjugate of p3 with respect to p1 and p2. That is, we
can create a point p4 so that (p1 p2 | p3 p4) = −1. Proceed as follows. First,
create the three starting points p1, p2, p3. To make sure they are collinear, we can
attach them to a line l (Figure 6.7a). De�ne an arbitrary point q1 not on l, and
draw q1p1, q1p2, q1p3 (Figure 6.7b). Choose a point q2 on q1p1 and draw q2p2

(Figure 6.7c). Let q3 be the intersection of q2p2 and q1p3 (Figure 6.7d). Draw
q3p1 and let q4 be the intersection of that line and q1p2. The intersection of q4q2

and l will be the harmonic point p4 (Figure 6.7e). We can drag any of the points
p1, p2, p3 and see how p4 is moved (Figure 6.7f).

This construction can be saved as a macro and applied to any three collinear
points. However, there are some pitfalls. First, p4 was de�ned as the intersection
of q4q2 and l. But l is a parent of p1, p2, p3 that we created just to make sure the
points are collinear. The line l will be completely irrelevant when the macro is
applied to three other collinear points. We make the following modi�cation of the
construction. Select l and p4 and invoke Edit→Delete Image (Figures 6.8a-b).
Then de�ne the line through p1 and p2 (which will be derived from p1 and p2) and
attach a point (p4) to the intersection of that line and q4q2 (Figures 6.8c-d). The
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Figure 6.7. Constructing the harmonic conjugate.
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Figure 6.8. Making sure that p4 is on a line which depends on p1 and p2.

second problem is that pdb macros can only be de�ned from constructions which
contain completely free or completely constrained objects. In the construction

above, q2 was de�ned as a arbitrary point on q1p1, and that will not be accepted.
The reason for this is that pdb will not know where to place q2 on q1p1 when this
macro is applied to a completely di�erent set of starting points. Therefore, pdb
leaves that decision to the user by requiring the position of the point to be fully
speci�ed. In this case, the placement of q2 does not matter since it will not a�ect
the position of p4. We can therefore work around the problem by creating a free
line intersecting q1p1 and attach q2 to that intersection (Figure 6.9).

Now the macro can be de�ned. Since we do not want the macro to draw all
auxiliary points and lines, we create a new view in which only the three starting
points and the resulting harmonic conjugate are visible (Figures 6.10a-c). Then we
select the three starting points and invoke File→Create Macro (Figures 6.10c-
d). The resulting macro can now be applied to any three collinear points. We
will use the macro later in this chapter.
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Figure 6.9. Attaching q2 to a free, arbitrary line.

6.1.4 Trilinear polarity

Consider the triangle de�ned by the three vertices in Figure 6.11a. For each side
s of this triangle, we will construct the harmonic conjugate of the point in which
s intersects an arbitrary, �xed line l. The lines connecting these harmonic points
with the opposite vertices of the triangle turn out to be concurrent.

We draw the sides of the triangle and create the three points in which the sides
intersect l (Figures 6.11a-c). For each side s, we select the two vertices on s and
the point in which s and l intersect. We then invoke the Harmonic Point macro
that was de�ned in the previous section (Figures 6.11d-e). The lines connecting
these harmonic conjugates with the opposite vertices can now be constructed
(Figure 6.11f). As you can see, these lines are concurrent (Figure 6.11g). This
property is true in general, which can be veri�ed experimentally by dragging the
vertices of the triangle or the line l in Figure 6.11g.

The proof of this theorem is quite simple. The original triangle p1, p2, p3 can
be inscribed in a quadrangle de�ned by p1, p2, p3, p4, as shown in Figure 6.11h.
The vertices of the corresponding diagonal triangle is q1, q2, q3. From Section 4.10
we know that the four points r1r3q1q2 are harmonic. By projecting these points
from q3 onto the line p1q2 and onto the line p1q4, we see that both p1, p2, r2, q2
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Figure 6.10. Creating the harmonic conjugate macro.
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Figure 6.11. Continued.

and p1, p3, q1, q4 are harmonic. Similarly, by projecting p1, p3, q1, q4 from q2 we
verify that p2, p3, r3, q3 are harmonic. Thus, q1, r2, r3 are the harmonic points
we constructed in Figures 6.11d-g. Finally, by projecting p2, p3, r3, q3 onto the
line p2p4 from p1 and by projecting p1, p2, r2, q2 onto the same line from p3, the
theorem follows.

The point q1 in Figure 6.11h is called the pole of the line l with respect to the
trilinear polarity de�ned by the give triangle p1p2p3. Of course, we could just as
well have started with the pole q1 and constructed the polar l.

6.1.5 Common tangents of two conics

In this section, we will investigate the common tangents of two conics. In partic-
ular, we will look at the lines connecting opposite tangent points.

The easiest way of drawing a conic is to place �ve points on the drawing board,
activate the conic tool, and enclose the points (Figures 6.12a-b). With the line
tool active, we can then create the four common tangents (Figures 6.12c-e). Next,
we create the eight tangent points, four on each conic (Figure 6.12f). The lines
connecting opposite tangent points are drawn in Figures 6.12g-i. Evidently, the
lines are concurrent.

Why is that? Figures 6.12j-k, which shows the points in which the tangents
intersects, provides a clue. Apparently, the lines connecting opposite intersection
points are also concurrent with the other lines. If we compare Figure 6.12k with
Figure 4.27 on page 56, we see that the four common tangents form a quadrilateral
and that the point in which all lines intersect in Figure 6.12k is a vertex in the
corresponding self-polar triangle. The fact that lines connecting opposite tangent
points meet in this vertex follows from the properties of a polarity.

In Figure 6.12l, we have drawn the points in which the two conics intersect.
Interestingly, the two lines connecting opposite intersection points are also con-
current with the rest of the lines.
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Figure 6.12. The lines connecting opposite tangent points are concurrent.
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6.1.6 Mapping points on the projective line

In Section 4.7 we showed that any three distinct, collinear points can be mapped
to three other collinear points by at most three successive perspectivities. Fur-
thermore, if point triples are on distinct lines, two perspectivities su�ce (see
Figure 4.10, page 36). Let us carry out this construction in pdb.

To de�ne the mapping, we need three pairs of corresponding points: p1 7→ p′1,
p2 7→ p′2, and p3 7→ p′3. Given a fourth point, p, we shall construct its image, p′.
We �rst create two arbitrary lines, place p1, p2, p3, p on the �rst one and p′1, p′2, p′3
on the second one, see Figures 6.13a-b. To simplify the sketch, we have removed
the images of the two auxiliary lines in Figure 6.13c.

We now create the lines p1p
′
1, p2p

′
2, p3p

′
3, and p3p

′
1. A point q1 is attached to

the intersection of p1p
′
1 and p2p

′
2, and a point q2 is attached to the intersection

of p3p
′
3 and p2p

′
2 (Figure 6.13d). The line q1p is created and a point r is attached

to the intersection of that line and p3p
′
1. The �nal step in creating a line from q2

to r is shown in Figure 6.13e. Finally, we de�ne the line p′1p
′
2 and let the point

p′ be the intersection of that line and q2r (Figure 6.13f). By dragging p to p1,
p2 and p3, we can verify that we have indeed constructed the desired mapping
(Figure 6.13g).

To save this construction as a macro, select p1, p2, p3, p
′
1, p

′
2, p

′
3, p and choose

Create Macro from the File menu (Figures 6.13h-i). As always, the order in
which the points are selected is signi�cant. To prevent the macro from displaying
all the auxiliary points and lines when it is invoked, we have deleted the im-
ages of all objects except the seven input points and the and resulting point p′

(Figure 6.13h).

It is just as easy to de�ne the dual construction, starting from three pairs of
corresponding lines. We would then create a point in each step where we created
a line above, and vice versa. Alternatively, we could load the macro �le into a
text editor and swap all strings �Point� and �Line�. The resulting dual macro,
which we will name Project Line, will be used in the next section.

6.1.7 Steiner's theorem

Steiner's theorem (Section 4.8.12) states that a conic can be de�ned from two
pencils of lines that are related by a projectivity on P1. The points of the conic
are the intersection points of corresponding lines (Figure 4.18a, page 47). Let us
verify that experimentally.

Draw an arbitrary conic and attach two points p and q to it. Create three
lines on p and place a point on the intersection of each of these lines and the conic
(Figure 6.14a). Connect q with each of the intersection points from (a), as shown
in Figure 6.14b.

There is a unique P1 projectivity that maps the three lines on p onto the
three lines on q. To see the e�ect of that projectivity, create a fourth line l on p,
select the seven lines and apply the Project Line macro that we de�ned in the
previous section, see Figures 6.14c-d. As shown in Figure 6.14, l and its image l′
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Figure 6.13. Constructing the P1 projectivity which maps three collinear points to three

other collinear points.
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Figure 6.14. Constructing the projectivity which de�nes the conic.
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intersect in a point on the conic. By dragging l, we can verify that this is true for
all points on the conic.

The P1 mapping is unique to the conic and will not be a�ected if we drag the
lines on p. As shown in Figure 6.14f, the position of l′ is not changed.
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p
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1.74

(c)

p
q

1.74 JJ

(d)

Figure 6.15. The cross-ratio of the four lines on q is independent of the position of q, as
long as q is on the conic.

In Figure 6.14f, the cross-ratio of the four lines on p must equal the cross-ratio
of the four corresponding lines on q. That follows from the fact that the two
pencils are related by a P1 projectivity. Furthermore, if q is dragged along the
conic the cross-ratio of the four lines on q will be constant since the corresponding
lines on p are �xed. That is easy to verify experimentally. Select the four lines
and apply the Cross-ratiomacro (Figures 6.15a-b). The cross-ratio is displayed
close to the intersection point (Figure 6.15c). The value is not changed when q is
dragged (Figure 6.15d).
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6.2 Examples from a�ne geometry

6.2.1 Constructing the midpoint of a line segment

There is no metric in a�ne geometry. However, the existence of a line at in�nity
makes it possible to de�ne some concepts that are usually associated with Eu-
clidean geometry. For example, the midpoint of a line segment pq may be de�ned
as the harmonic conjugate of the point at in�nity on the line pq (Section 4.12.4).

Thus, we can construct midpoints using the harmonic conjugate macro that
was created in Section 6.1.3. We will also use pdb's Point to Infinity macro
which moves the selected points to the line at in�nity. When applied to free
points, the macro simply sets the homogeneous coordinate to zero. When applied
to a point that has been attached to a line, the macro moves the point to the
in�nity point on that line.
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p qs
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Figure 6.16. Constructing the midpoint of a line segment pq.

Figure 6.16a shows two given points p and q on a line. First, an auxiliary
point r is placed on the line. Then we de�ne s, the harmonic point of r with
respect to p and q by selecting the three points and invoking the Harmonic Point

macro (Figures 6.16b-c). Next, we select the point r and send it to in�nity using
the Point to Infinity macro (Figures 6.16d-e). As shown in Figure 6.16f, s
becomes the midpoint of the segment pq.
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6.2.2 Concurrent medians of a triangle

A line connecting the midpoint of the side of a triangle with the vertex that is
opposite to the side is called a median, see Figure 6.17.

Figure 6.17. A median.

There is a theorem which states that the three medians of a triangle are con-
current. The theorem is often proved in elementary Euclidean geometry, but since
midpoint is an a�ne concept, the theorem is really an a�ne one. Furthermore, it
is a special case of the theorem discussed in Section 6.1.4 above.

Return for a moment to Figure 6.11g. To illustrate the a�ne version of the
theorem, we need to place the line l at in�nity. That can be done using the Point
to Infinity macro in the following way. Create to auxiliary points and attach l
to them (Figures 6.18a-c). Then select the auxiliary points and invoke Point to

Infinity (Figures 6.18d-e). The result is shown in Figure 6.18f.

6.3 Examples from Euclidean geometry

6.3.1 The angle between two chords of a circle

It is a well-known Euclidean theorem that if q, r, s are three distinct points on
a circle, the angle rqs is independent of the position of q. We can use pdb to
illustrate this fact.

In Figure 6.19a, we have attached three points to a given circle. (The circle
might have been created with the Circle on Three Points macro.) We have
also de�ned the lines qr and qs. In Figures 6.19b-d, the (Euclidean) angle rqs
is measured. The angle value will not change if q is dragged along the circle
(Figure 6.19e).

This theorem can easily be proved using elementary angle formulas. Inter-
estingly, however, the theorem follows immediately from Steiner's theorem and
the discussion in Section 6.1.7. As explained in Section 4.12.3, the angle rqs is
closely related to the cross-ratio of the four lines qr, qs, qI and qJ , where I and J
are the circular points. Since every circle contains I and J , the cross-ratio of qr,
qs, qI and qJ does not depend on the position of q (cf Figure 6.15d, page 190).
Consequently, the angle rqs is constant.
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Figure 6.18. The three medians of a triangle are concurrent.
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Figure 6.19. The angle rqs is independent of the position of q on the circle.
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6.3.2 Confocal conics

In Section 4.12.3, we de�ned the focal points of a conic as the points where the
ideal tangents of the conic intersect each other. It follows that confocal conics
share the same four ideal tangents, see Figure 4.42 on page 73. In this section, we
will show how to generate a set of confocal conics in pdb. To make the construction
easier to follow, we will use two ordinary points instead of the absolute points I
and J (as in Figure 4.42). Later, we will repeat the same construction starting
from the two absolute points.

The goal is to construct a conic which has the same focal points as the conic
given in Figure 6.20a. The �rst step is to place two arbitrary points (which will
play the roles of I and J) on the background, and draw the four tangent lines.
A �fth, free line is also placed on the background (Figure 6.20b). By activating
the conic tool and picking the �ve lines, we can create a conic that is tangent to
the �ve lines (Figure 6.20c). To record this construction as a macro, we select the
original conic, the free line and the two points, then invoke Edit→Create Macro

(Figures 6.20d-e). We will name this macro Confocal.

To obtain a confocal conic we will now apply the Confocal macro to the
given conic, the free line, and the absolute points I and J . The only problem
is how to refer to I and J? The most straightforward method is probably to
enter the (complex) coordinates of I and J from the keyboard. However, we
will show a trick that saves us from typing. We apply the standard Circle on

Three Points macro1 to three arbitrary points (Figure 6.20g). The circle has
�ve parents: I, J and the three points shown in (g). By selecting the circle
and invoking Edit→Select Parents, we place the parents of the circle in the
current selection. Then we deselect the three ordinary parent points by enclosing
them while holding the Shift key down (Figure 6.20i). The current selection
now contains only I and J . We add the conic and the free line to the section
and invoke the Confocal macro we prepared above (Figure 6.20j). The result is
shown in Figure 6.20k. By dragging the free line, we can pick any conic in this
set of confocal conics. The hyperbola in Figure 6.20l is one of them.

How can we create the focal points? The Confocal macro did not display
the ideal tangents in Figure 6.20k because the tangents were not visible when the
macro was recorded. However, it is easy to make them visible. We just select
the original conic and invoke Edit→Select Children followed by Edit→Create

Images. The ideal tangents are displayed in gray since their coordinates are
complex (Figure 6.20p). Nevertheless, with the point tool active, we can still
place points on their intersections (Figure 6.20q). As explained in Section 4.12.3,
two of them will be real. They are the ones we usually call focal points.

6.3.3 A theorem of Poncelét

We can use the focal points from the previous section to illustrate the following
theorem due to Poncelét. Place an arbitrary point p on the drawing board. Draw

1The macro was discussed in Section 5.3.6.
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Figure 6.20. Constructing confocal conics.
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Figure 6.21. A theorem of Poncelét.
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the tangents through p and the lines which connect p with the two focal points
(Figures 6.21a-b). It turns out that the two angles that we have measured in
Figures 6.21c-d are always equal. If p is attached to the conic, the theorem
specializes to the re�ection law (Figures 6.21e-f).

6.4 Examples from hyperbolic geometry

6.4.1 Constructing an isometry

In a non-degenerated geometry, such as hyperbolic geometry, angles and distances
can be de�ned in terms of a proper, absolute conic. The isometries are exactly
those projectivities which leaves the absolute conic invariant (Section 4.11.5).
Here, we will construct such a projectivity. Furthermore, we will construct it in
such a way that we can obtain all isometries just by varying the position of a few
points (see also [Coxeter98]).

We showed in Section 4.8.12 that a projectivity which preserves a conic is
completely determined by three pairs of corresponding points on the conic. Given
an absolute conic Ω and six points p1, p2, p3, p

′
1, p

′
2, p

′
3 on Ω (Figure 6.22a), we will

construct a projectivity on P2 which maps Ω onto itself and which takes p1 to p′1,
p2 to p′2 and p3 to p′3.

We start by mapping points on Ω. Then we will extend that map to the
rest of the projective plane. In Figure 6.22b, the Pascal line corresponding to
p1, p2, p3, p

′
1, p

′
2, p

′
3 has been drawn. Given an arbitrary point p on Ω, we draw

the line pp′2. If that line intersects the Pascal line in r, we draw rp2 and de�ne
p′, the image of p, as the intersection of rp2 and Ω (Figure 6.22c). By dragging
p along Ω we can verify that this projection actually maps p1, p2, p3 to p′1, p′2, p′3
(Figure 6.22d). Actually, the fact that p3 7→ p′3 is a consequence of Pascal's
theorem.

Since we will need to map several points, we save this construction as a macro.
We select the conic, p1, p2, p3, p

′
1, p

′
2, p

′
3 and p, then invoke File→Create Macro

(Figure 6.22e).

Now, given an arbitrary point q1, not necessarily on the conic, we draw the
tangents through q1 and de�ne the tangent points t1 and t2. We can obtain
the images of the tangent points (t′1 and t′2) using the macro we de�ned above
(Figure 6.22f). The tangents through t′1 and t′2 intersect in q′1 (Figure 6.22g).
Since a projectivity preserves incidences, q′1 must be the image of q1. We now
have a projection on P2 which preserves Ω, i.e., an isometry.

We save the construction as a macro and apply it to a second point q2 (Fig-
ures 6.22h-i). To verify that the projectivity really is an isometry, we can compare
the distances q1q2 and q′1q

′
2. Of course, we should use the metric de�ned by Ω. As

shown in Figure 6.22j, the two distances are equal. By using a third pair q3, q
′
3 of

corresponding points, we can in a similar way con�rm that the angles q1q2q3 and
q′1q

′
2q
′
3 are equal.

By dragging any of the points p1, p2, p3, p
′
1, p

′
2, p

′
3, we obtain other isometries.
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Figure 6.22. Investigating isometries in hyperbolic geometry.
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As long as q1, q2 and the conic are �xed, the distance between q1 and q2 and
between q′1 and q′2 will be constant (Figure 6.22k).
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Chapter 7

Conclusions and

generalizations

How well does pdb compare with other, similar systems? What lessons can be
learned from its design? What is the future of dynamic geometry? We will start
by comparing pdb with two other tools in the next section. In Section 7.2, we
evaluate two decisions that had a large impact on the design of pdb. The need for
evaluating pdb in real classroom situations is pointed out in Section 7.3. Finally,
in Section 7.4, we discuss how the current system could be developed further.

7.1 Comparing pdb with other, similar systems

In this section, we compare pdb with two other, similar systems: Cabri (cf Sec-
tion 2.1) and Cinderella Café (cf Section 2.3). We will describe how pdb di�ers
from these systems and in what way pdb constitutes an improvement.

The reason we have chosen Cabri and Cinderella Café for comparison is that
they take the same construction-oriented approach to dynamic geometry as pdb
(cf Section 5.1.3), and that all three systems have similar application domains
and potential user groups. Cabri is much more widely used than Cinderella Café,
but both systems must be considered to represent state-of-the-art in dynamic
modeling.

Our comparison is based on the program versions and written documentation
that are available at the time of writing (January 1999).

7.1.1 Expressive power

Support for simple incidence constraints between points and lines is all that is
needed to study, for example, the properties of quadrangles and quadrilaterals
(Section 4.10) or to illustrate the theorem of Pappus (Section 1.3). However, to
illustrate e.g. Pascal's theorem we also need conics. To study the relationship
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between a quadrilateral and its inscribed conics, we must be able to de�ne tan-
gency constraints. To experiment with the focal points and the axes of a conic, it
must be possible to de�ne the circular points (Section 4.12.3), and so on. Thus,
the more expressive power a system has, the more advanced are the drawings it
can produce. Let us compare pdb, Cabri and Cinderella Café in this respect.

• pdb supports several types of tangency constraints. If a free line is attached
to a conic, it becomes a tangent to that conic. The line will have one degree
of freedom left and can therefore be dragged along the conic. If the line
is also restricted to be incident with a point, it can occupy two di�erent
positions (see Figure 5.1, page 81). pdb makes sure that the line does
not jump between these positions if either the conic or the point is moved.
However, pdb allows the user to drag the line between the two allowable
positions.

Cabri has no primitive for representing tangent lines. A line that is tangent
to a conic C and also incident with a given point p must be created using, for
example, the construction shown in Figure 5.15, page 97. However, such a
construction is sensitive to the placement of the auxiliary points. As a result,
the tangent line will jump unpredictably if the conic is moved. Moreover,
since Cabri does not support complex coordinates, the construction breaks
down if the point p is moved inside the conic.

The currently available version of Cinderella Café draws the tangents through
a given point p as a line pair, i.e., as a degenerated conic. It it not possible to
show just one of these lines. The two lines are not distinguished, so a point
placed on one of the lines may very well slide over to the other line if the
conic is moved. (This will probably be �xed in the next release of Cinderella
Café.) Like Cabri, Cinderella Café cannot handle complex tangents.

Moreover, in contrast to pdb, neither Cabri nor Cinderella Café allows the
user to draw the common tangents of two conics. Consequently, they cannot,
for example, represent the drawing shown in Figure 6.12, page 184.

• As already mentioned, pdb can perform complex arithmetic and represent
complex points and lines on the screen (Section 5.3.4). This capability,
which both Cabri and Cinderella Café lack, makes many constructions in-
volving conics more general and useful. For example, the polar construction
shown in Figure 5.47 on page 144 works even if the point is inside the conic.
Furthermore, having complex coordinates allows the users of pdb to use
the circular points I and J (Section 4.12.3) for creating circles (Figure 5.55,
page 153), focal points (Figure 6.21, page 199), confocal conics (Figure 6.20,
page 196), etc. Support for complex geometry also makes it possible to use
an elliptic metric, which is de�ned by an absolute point conic with a complex
point set (Section 4.12.2).

• In Cabri, all distances and angles are assumed to be Euclidean. In contrast,
in a pdb drawing, the metric can be speci�ed for each single measurement
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and metric constraint. The currently available version of Cinderella Café
does not support measurements or metric constraints.

• pdb is the only system which allows the user to open several views whose
coordinate systems are related by general projectivities1. Thus, a point
which is at in�nity in one view might be a perfectly ordinary point in another
view. This feature is very useful since it allows the user to interact with
objects at in�nity and see the e�ect on dependent objects closer to the origin.
However, as explained in Section 5.3.3, it also means that, in general, there
will be no one-to-one correspondence between the angles (or distances) in
di�erent views. Thus, measurements and metric constraints become view-
dependent. pdb has been designed to cope with this view-dependency and
to handle measurements and metric constraints consistently in all situations.
For example, if the user adds a equality constraint α = β between two angles
(e.g. by dragging α onto β), pdb �rst makes sure that α and β have been
measured in the same metric so that they are comparable, then records
that the constraint should hold in that particular metric. Furthermore, pdb
chooses a suitable default metric for each view so that, for example, the angle
between two lines that appear to be perpendicular on the screen will have the
value π/2. The default metric chosen by pdb depends on the type of view: a
CartesianView (Section 5.3.1) is associated with a Euclidean metric which
has the same line at in�nity as the view, and a PoincareView is by default
associated with a hyperbolic metric whose absolute conic is projected onto
the rim of the Poincaré disc. However, a view can be explicitly associated
with any type of metric. Furthermore, any conic in the drawing can serve
as the absolute conic for a (non-degenerated) metric. This feature was used
in Figure 6.22 on page 201. By changing the shape of the absolute conic,
the metric can be modi�ed dynamically. The support for de�ning and using
metrics found in pdb is to our knowledge unmatched by other tools.

Thus, compared to existing systems, pdb contains several new features which allow
us, for the �rst time, to visualize a number of interesting geometric constructions
in dynamic, interactive drawings.

7.1.2 User interface

In Section 5.2.3, we discussed a number of interaction problems that can be found
in virtually every other dynamic geometry system. Particularly annoying are
what we termed jumping and drifting objects since they often cause a geometric
con�guration to collapse when the user moves an object slightly. For example,
the undesirable e�ect illustrated in Figures 5.18 and 5.19 on page 102 can be seen
in Cabri drawings. Moreover, Cabri does not always distinguish an angle from
its complement. Consequently, an angle α in a Cabri drawing can suddenly take
the value π−α. If α is used in metric constraints, all objects whose positions are

1Actually, this feature was introduced in drawing board system discussed in [Naeve89].
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determined by α will jump at the same time. Drifting objects (Figures 5.16 and
5.17, page 100) is a major problem in Cinderella Café.

Two basic requirements, continuity and repeatability, which every dynamic
geometry tool should ful�ll were formulated in Section 5.2.4. In Sections 5.2.5
through 5.2.7 we showed that these requirements could be met in most situations
using oriented geometry for representing the position of objects, signatures for
identifying the roots of equations, and P1 coordinates (cross-ratios) for represent-
ing angles and distances. The methods we suggest have all been implemented and
tested in pdb. Combined, these improvements give the user interface of pdb a
stability and smoothness not provided by any other comparable tool for dynamic
geometry currently available.

The drag-and-drop operations supported by pdb resemble those of Cabri (and
other tools, e.g. GSP, see Section 2.2). In contrast to Cabri, however, pdb also
allows all types of incidence constraints to be removed or rede�ned using the
same drag-and-drop interface. This important feature allows the user to correct
mistakes made earlier in a construction. It also allows the user to see why certain
constraints are necessary. For example, the user could tear one of the points from
the conic in Figure 1.4b on page 6 to verify that Pascal's theorem is valid only if
all six points are on the conic. Finally, only pdb allows angles and distances to
be copied using simple drag-and-drop operations.

Apart from this, there are three other noteworthy improvements to the user
interface compared with Cabri and Cinderella Café.

• In contrast to the macro facilities in other tools, pdb's macro language
(Tcl) gives the user full access to the entire system. It is possible to de�ne a
drawing, to alter an existing drawing, to create animations and to perform
advanced matrix computations in a Tcl script.

• pdb is the only system which can show the structure of a drawing (i.e. the
dependencies among the objects) as a graph (Section 5.3.1). The user can
easily modify the graph should he not be satis�ed with the default layout.
It is easy to see the correspondence between the dependency graph and
the other views since the objects are consistently named and colored in all
views. Also, when the user selects an object, it is highlighted in all views
simultaneously.

Cinderella Café can list the dependencies in text form, much like a macro,
but cannot display them graphically. Cabri has no such feature at all.

• pdb can produce high-quality PostScript output, which can be scaled and
inserted into a written document. In fact, most �gures in this thesis have
been produced with pdb.

7.1.3 Performance

As mentioned in Section 5.4.1, we consider a short response time to be one of the
most important design criteria. If the response time is too long, the objects on
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the screen will lag behind the cursor during dragging operations. The drawing
will then feel jelly-like and will be hard to control. The importance of having
almost instantaneous, accurate feedback cannot be emphasized enough.

We think that the response time of pdb is satisfactory, and signi�cantly shorter
than existing tools, especially for complicated drawings. However, it is di�cult
to make an accurate and fair comparison of response times, for three reasons:

• Some tools, such as pdb and Cabri, have been compiled into native machine
code. In contrast, Cinderella Café runs on the Java virtual machine, which
induces a signi�cant run-time overhead. This overhead will be reduced if
Cinderella Café is compiled into native code. Thus, comparing pdb and
Cabri with the interpreted version of Cinderella Café is not very meaning-
ful. It is reasonable to assume, however, that Cinderella Café, like most
applications written in Java, must scarify some of its speed for increased
�exibility and portability.

• The three systems currently run in completely di�erent environments. For
example, Cabri is only available for Microsoft Windows and for the Macin-
tosh. On both systems, Cabri uses a native and very fast windowing system.
In contrast, pdb runs under UNIX and uses XWindows, a network-based
windowing system. That will of course reduce the speed at which the con-
tents of the windows can be updated, especially if pdb and the windowing
system server communicates over a network. On the other hand, a stan-
dard PC is still signi�cantly slower than the average UNIX workstation.
Cinderella Café uses the windowing capabilities provided by the Java envi-
ronment. Consequently, if Cinderella Café is executed from within a web
browser, the characteristics and quality of the browser will a�ect the overall
performance.

• Depending on the set of geometrical primitives available in each tool, certain
types of drawings will be updated faster than others. This is the classical
problem with performance evaluations: we have to agree on a set of repre-
sentative benchmarks.

Because of this, we have not attempted to measure and compare the response
time of the tools. However, such a comparison would de�nitely be valuable if
properly conducted. A Microsoft Windows version of pdb is planned, and could
be compared directly with the Windows version of Cabri. The next version of
Cinderella Café will probably be available as native code for at least some UNIX
system, and could then be compared with the UNIX version of pdb.

It must be understood, though, that there is a con�ict between keeping the
response time short and having a smooth and stable interface. For example, to
avoid the problems described in Section 5.2.3, a signi�cant amount of computation
is required each time the drawing is updated. Thus, in order to make a fair
comparisons of the response time of di�erent systems, the overall impression of
the user interface must be taken into account.
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7.2 Two major design decisions in retrospect

7.2.1 Internal representation

As explained in Chapter 2, dynamic geometry systems fall roughly into two cat-
egories, constructive and constraint-based. pdb, Cabri and Cinderella Café all
belong to the �rst category. With these tools, a drawing is de�ned as a sequence
of constructional steps. In contrast, a constraint-based system can create a draw-
ing from a given set of constraints. The pros and cons of the two approaches were
discussed in Section 5.1.4.

While developing pdb, we have found it very important to have access to the
simple and explicit representation of the geometric constraints that the depen-
dency graph provides. The graph made it possible to speed up computations and
to give the user appropriate feedback in every situation.

However, if more types of objects and/or constraints are added to the system,
the number of di�erent node types needed in the dependency graph grows very
fast. Up to, say, 50-100 di�erent combinations of objects and constraints, the
situation still remains manageable. Above that limit, the dependency graph gets
too complicated, and a more uniform, algebraic representation might be more
appropriate.

Nevertheless, we strongly believe that choosing a constructive representation
for the current version of pdb was the correct decision as it allowed us to improve
the user interface signi�cantly while keeping the response time down. In that
respect, pdb has set a new standard for the user interfaces of dynamic geometry
systems. If we choose a di�erent internal representation for future versions of
pdb, we must make sure that it has no negative e�ects on the user interface.
There are several examples of constraint-based geometry systems whose internal
representations, although simple and elegant, require heavy computations and
still fail to support important aspects of the user interface. The result has been
slow systems which are hard to use.

Curiously, most constraint-based geometry systems seem to be based on logic
programming and several systems have actually been implemented in Prolog.
That seems strange since the geometric constraints give rise to non-linear systems
of polynomial equations which have very little to do with predicate logic. Not
surprisingly, these systems have problems even with the simplest of incidence
constraints, such as tangencies between lines and conics. We think that systems
of polynomial equations should be solved using general and powerful algebraic
methods, such as Gröbner base techniques (Section 5.1). Only with the help of
such a method will the software have a chance to analyze the geometric constraints
and guide the user through the construction.

7.2.2 Implementation language

For reasons discussed in Section 5.4.3, we chose C++ as the primary implemen-
tation language for the pdb kernel. The main reason was that we anticipated
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a need for extensive code optimization in order to achieve an acceptable perfor-
mance for complicated drawings. And indeed, it did turn out to be necessary to
use e.g. in-line code expansion, loop unrolling, and fast iterators for accessing the
contents of containers. C++ has been designed to allow for that type of low-level
optimization, and we do not believe that a comparable speed-up could have been
achieved with a language such as e.g. Java.

C++ has a reputation for being overly complicated and hard to use. How-
ever, with the standardization of the language and its library, the situation has
improved dramatically. In fact, the C++ language itself has not caused us any
problems. Instead, the main di�culty has been that we also have had to use a
second, interpreted language for certain tasks. As explained in Section 5.4.3, it
is important that the user has access to a macro language which does not re-
quire compilation or linking. We chose to extend the Tcl language and to de�ne
an interface between Tcl and C++ using TIDE (see Appendix A). The use of
two di�erent languages in an object-oriented system raises several questions. For
example, in what language should the objects be implemented and what should
the division of responsibilities be? If we would have used Java for implementing
the pdb core, there would have been less need for a second, special macro lan-
guage, since Java can also run interpreted. Thus, a single language might have
su�ced, which would have simpli�ed the implementation considerably. However,
the performance of the system is much more important to the end-user than how
the software is organized internally, and in that respect we still think that the
C++/Tcl solution was the best choice.

7.3 Evaluating the tool in real teaching situations

So far, pdb has been tested only by a small group of people. A few live demon-
strations have also been given in di�erent contexts. What is obviously lacking is
a proper evaluation of pdb in a realistic teaching situation. A number of infor-
mal, unpublished tests in classroom situations were performed with a forerunner
of pdb back in 1988 [Naeve89]. Some of observations that were made then have
in�uenced the design of pdb, e.g. the need for having the dependency graph dis-
played on the screen in order to understand the structure of a given drawing. It
is now time to put pdb to a similar test. There are a number of questions that
need to be answered.

• In what ways can the use of computerized visualization tools, in particular
dynamic geometry systems, make it easier to teach geometry? The new
generation of students will be used to computer-generated animations and
highly interactive computer games. Therefore, we believe that the ability to
experiment, in real-time, with complex geometric constructions will appeal
to them and encourage them in their further studies, not only in geometry,
but in mathematics in general. It is however an open question how the use of
computer-based visualization and experimentation tools is best integrated
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into the mathematical curriculum. There are surely pedagogical pitfalls that
can only be discovered through experimentation [Wilson99].

• For what forms of teaching is pdb best suited? A dynamic geometry system
can be used in several ways. In a traditional course, based on a textbook, the
students might use the system only for certain exercises. During lectures, the
teacher could use the system as an alternative to drawing on a whiteboard.
In fact, we are currently experimenting with using pdb on a touch-sensitive
whiteboard, which allows the teacher to create and manipulate dynamic
drawings, using only the tip of his �nger. One could also imagine a web-
based course centered around an on-line textbook. Such a textbook could be
illustrated with dynamic drawings with which the students could interact. It
would not be too di�cult to extend pdb with a multi-user capability which
would allow the teacher to help the students with exercises and assignments
remotely over a network (Section 7.4.2).

• How can the unique features of pdb, such as its ability to handle objects in
the complex projective plane and its extensive support for handling metrics,
be used to better illustrate the relationship between di�erent geometries?

• How useful is pdb (and dynamic geometry systems in general) for exploring
the geometric structure of problems in e.g. robotics and computational
vision?

• What are the users' impressions of the graphical interface of pdb? In partic-
ular, are the drag-and-drop operations for adding and modifying constraints
intuitive? Is the textual feedback provided by the pdb drawing tools rele-
vant? Is the dependency graph useful for understanding how a construction
works and for identifying objects?

However, such a study must be carefully prepared. No serious conclusions could
be drawn from a study where pdb, or another tool for dynamic geometry, is put
into the hands of unprepared students. One of the main ideas behind the pdb
project was to build a drawing tool based on purely projective concepts, but with
the capability of handling di�erent types of metrics. We believe that such a tool
could, if used properly, help to illustrate and to clarify the relationship between
projective, Euclidean and non-Euclidean geometry. Some examples along these
lines were given in Chapter 6. It is unlikely, though, that such examples would be
appreciated unless the students are familiar with the basic concepts of projective
geometry.

For a �rst evaluation, we therefore envisage a short course in projective, Eu-
clidean and non-Euclidean geometry based on a good, standard textbook, where
the exercises are carried out by the students using pdb. There would be tradi-
tional, live lectures where the teacher could use pdb e.g. on a touch-sensitive
whiteboard. Supplementary material, illustrated with pdb drawings would be
available on the web.
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To create such a course, to carry it out successfully, to make observations
and to draw conclusions would be a major undertaking. It would be necessary
to establish a good working relationship with the teachers and to sell the idea
of reintroducing a serious geometry course into the curriculum. A rough time
estimate for all of this is at least one man-year. In fact, there would be enough
work for another thesis. The focus would then be on the general didactic ques-
tions related to computer-aided mathematical education, and not so much on the
capability and the user interface of the geometry system itself.

To summarize, we have so far concentrated entirely on designing and build-
ing the software, in the �rm belief that it is not meaningful to do half-hearted
evaluations of poorly designed tools or unstable implementations. However, we
have now reached a point where we are ready to evaluate pdb in a classroom
situation, to investigate what the bene�ts of computer assistance in teaching are
and, more speci�cally, evaluate how well pdb compares to other, similar tools in
terms of performance and user friendliness. In fact, the Centre for User Oriented
IT Design (CID) at KTH is currently applying for funding to carry out such a
project in cooperation with the Department of Teacher Training (ILU) at Uppsala
University.

7.4 Future development

We regard the development of pdb as a �rst step towards building a more gen-
eral environment for working with dynamic geometry. Several improvements and
generalizations of pdb are possible. Some of these improvements �t well into the
current framework and would therefore be relatively easy to add. Two such ex-
amples are discussed in Section 7.4.1. In contrast, the extensions discussed in
Section 7.4.2 would require major changes to the software.

7.4.1 Minor improvements of the current system

Degenerated conics

Currently, all conics in pdb are assumed to be proper. However, allowing conics to
degenerate would be quite useful in certain situations, e.g. for showing how a non-
Euclidean geometry is transformed into Euclidean geometry when the absolute
conic collapses.

It would not be di�cult to check if the coe�cient matrix of a conic is close to
being rank de�cient and in that case, draw the conic as a pair of lines. However,
since there is no 1-1 correspondence between degenerated point conics and degen-
erated line conics (cf Section 4.8.13), we would also have to make a distinction
between point conics and line conics in general. That would have consequences
also for other objects. For example, a metric (Section 4.11.1) would not be de�ned
by a single absolute conic but rather by a pair of possibly degenerated conics: a
point conic Ω for measuring distances and a line conic Ψ for measuring angles.
Thus, allowing for degenerated conics requires some additional work.
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Tangency constraints on conics

Currently, it is not possible to require two conics to be tangent in a point.
Such tangency constraints are interesting e.g. when studying hyperbolic geom-
etry where circles are conics that have double contact with the absolute (Sec-
tion 4.11.4).

7.4.2 Major extensions

Multi-user capabilities

pdb is currently a single user system. However, when used for collaborative
work, pdb would have to have some sort of multi-user capability. For example,
students taking a network-based distance course in geometry would typically be
geographically spread out. While doing their assignments or exercises, they could
ask a teacher working on a remote machine for help. It should then be possible
for the teacher to attach to the student's pdb process and look at the student's
drawing. If the teacher modi�es the drawing, the student should be able to see
the cursor movements and every operation that the teacher performs, including
menu selections etc.

Obviously, the actions of the users working with the same drawing would have
to be synchronized. To accomplish that, we would have to de�ne a protocol for
updating the drawing. The protocol would basically be a set of transactions that
are always completed uninterrupted, e.g. a complete dragging operation. The
communication between di�erent pdb processes would probably be implemented
using remote CORBA [Siegel96] objects.

Extensions to projective three-space

It is natural to ask if the current system can be generalized to three-space. We
believe that such a generalization is possible but would involve a number of di�-
culties.

• The geometric objects will be more di�cult to visualize and to interact
with than in the two-dimensional case. For example, how should an in�nite
plane in P3 be drawn, so that the user can estimate its slope? How should a
quadric (the three-dimensional counterpart of a conic) be drawn so that its
shape can be clearly perceived? It will probably be necessary to put texture
on the surfaces and to compute shades and occlusions. At the same time, the
scene must be updated in real-time when objects are dragged. Furthermore,
to manipulate three-dimensional objects and to drag such objects around in
three-space using a standard pointing device will be quite di�cult and will
require a carefully designed user interface.

• However, the main di�culty lies in mastering the increased complexity of
the algorithms and the data structures. How many di�erent types of objects
and constraints should the system be able to handle? It is always a problem
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to set the boundaries of a system, but in the two-dimensional case, it is easier
to �nd a reasonably small set of objects that can be combined freely. For
example, pdb supports only points, lines and conics. This set is �closed� in
the sense that conics and lines intersect in points. In contrast, two quadrics
in three-space intersect in a non-planar curve. Should the three-dimensional
version therefore be able to handle arbitrary algebraic space curves? If so,
why not general algebraic surfaces as well? Should it be possible to de�ne the
intersections and the tangent planes of such surfaces? It is evident that the
set of di�erent types of objects types and di�erent types of constraints will be
signi�cantly larger in the three-dimensional case. The constructive approach
using an explicit dependency graph will probably have to be replaced by a
more general, algebraic representation of objects and constraints. More
general geometric algorithms have to be developed, possibly using Cli�ord
algebra [Hestenes84].

Needless to say, a three-dimensional version of pdb will be orders of magnitude
more di�cult to write than the two-dimensional version. On the other hand,
the work would be very rewarding. Since three-dimensional geometry is so much
harder to picture in the mind's eye, a tool for three-dimensional dynamic geometry
would be extremely useful. We also believe that the experience we have gained by
implementing the current version of pdb will prove to be invaluable if we develop
a three-dimensional version.
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Appendix A

TIDE: A Scripting Language

Interface to C++ Libraries

Abstract

In this paper we discuss how to generate wrapper code that allows existing C++

class libraries to be accessed from scripting languages such as Tcl and Perl. Pre-

viously suggested approaches to this problem are reviewed and compared. We point

out some problems related to the C++ object model and the di�culties introduced

by advanced C++ constructs such as templates, nested types, type de�nitions,

temporaries, implicit casts, multiple inheritance and overloading. We argue that

it is necessary to support all of these features, as they are used frequently in all

modern C++ libraries. A new system called TIDE, which integrates C++ and

Tcl, is presented and we describe the ideas behind its design. As an example, we

show how TIDE can be used for accessing the ISO C++ draft standard library.

A.1 Introduction

Interpreted scripting languages like Tcl [Ousterhout94] and Perl [Wall96] are be-
coming increasingly popular alternatives to strongly typed and compiled lan-
guages such as C and C++. Programmers have reported a signi�cant increase
in productivity when using scripting languages, especially for applications with
graphical user interfaces. There are probably several reasons for that. Scripting
languages are simple and easy to learn. They are interpreted and thus encourage
experimentation and incremental development. Scripting languages often operate
on a higher level than most traditional languages, which makes things like �le
management and event processing easy to implement.

Many scripting language interpreters are embeddable, which means that they
can be integrated into any application program. The standard command reper-
toire can be extended with new, application-speci�c commands, implemented by
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external functions written in C. For example, when using a word processor, it
is often convenient to express complicated editing operations in a built-in macro
language. When the word processor is launched, it can instantiate a new script-
ing language interpreter and add application-speci�c commands such as basic text
editing operations, see Figure A.1.

Word Processor

Built-In Commands

Application Commands

Tcl Interpreter

Figure A.1. A word processor with a Tcl interpreter.

The simplest possible application program using an embeddable interpreter is
a shell. It is a completely general program which simply creates an interpreter,
reads commands from an input stream and passes them on to the interpreter for
execution. The shell's interpreter will not contain any application-speci�c com-
mands. Instead, it will be dynamically linked to external application libraries at
run-time, and a new command will be added to the interpreter for each library
function found. In this way, it is possible to access libraries without ever com-
piling a main program. For example, if an OpenGL graphics library [Woo97] is
dynamically linked to the shell, one can experiment with 3D graphics by writing
simple scripts or by typing commands interactively to the shell prompt.

The possibility of extending the core scripting language with new commands
implemented as external functions makes an embeddable interpreter a very pow-
erful tool. However, it is usually assumed that extensions will be written in C,
and most scripting languages have very little support for other languages. In this
paper, we discuss how C++ libraries can be accessed from a scripting language.
The use of object-oriented libraries means that classes and objects must be rep-
resented in the scripting language and that polymorphism must be supported.
Furthermore, we will assume that the C++ libraries have been written indepen-

dently of the scripting language and thus have not been designed to cooperate
with an interpreter. This will introduce additional problems that have to do with
object identity and memory management, but on the other hand, it will enable
us to use any existing C++ library without modifying its source code.

Calling an external function from an interpreter requires a piece of wrapper
code, written speci�cally for that function. The interpreter will pass parameters
to external functions in a �xed, pre-determined format and it will be the respon-
sibility of the wrapper code to place the parameters in the appropriate registers
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or on the stack, before calling the external function. The wrapper code may also
have to convert parameters to the representation expected by the external func-
tion. For example, the interpreter might pass the integer parameter 17 as a string,
"17", while the external function expects to get a binary integer.

Writing such wrapper code by hand is both tedious and error-prone, even for
a small library. When classes and polymorphism are involved, the wrapper code
gets quite complicated. In this paper, we present a new tool called TIDE (Tcl
Interface DE�nition), which can generate the wrapper code automatically. From
a declaration of functions and classes in an existing C++ library, which will be
called the client library, TIDE creates a companion wrapper code library. Both
the client library and the corresponding wrapper code library can be dynamically
linked to the Tcl shell, tclsh, or any other application program that contains a
Tcl interpreter, see Figure A.2.

Tcl Interpreter

Application
or Shell

Interface Spec.
Client Library

Client LibraryWrapper
Library

CC

TIDE
Compiler

C++ Source

Figure A.2. Compiling a wrapper code library.

Although the focus here will be on Tcl, the same technique could be used with
minor modi�cations for Perl and other scripting languages.

It is assumed that the reader is familiar with C++ but not necessarily with Tcl
or Perl. Therefore, a short description of Tcl is given in the next section. Next,
we apply TIDE to a simple class and show how the system works in practice.
Previous work is reviewed in Section A.4, and in Section A.5, a more complicated
class, which cannot be handled by existing tools, is presented. A number of
important design decisions are discussed in in Section A.6. Sections A.7, A.8 and
A.9 describe how a class interface is speci�ed in TIDE, how the interface can be
used from Tcl, and what the wrapper code looks like.

A.2 Tcl � the Tool Command Language

Tcl is an embeddable scripting language and extensions are assumed to be written
in C. The language is very simple. All commands have the structure command

arg1 arg2 ..., where command is either a procedure de�ned in Tcl itself, or
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a command implemented by an external C function. The main data types are
strings, lists and associative arrays1. xyz and 17 are both string literals. xyz

can be used as a variable or procedure name, and 17 can be used as a numerical
operand. If xyz is the name of a variable, $xyz refers to its value while xyz refers
to the variable itself. For example, set x $y assigns the value of y to x. {xyz

17} is a list of length 2, and {} is the empty list. Control structures such as if
and for are regular commands which take boolean expressions and command lists
as arguments. For instance, the command while {$x<17} {incr x} increments
the value of x until it reaches 17. If the result of one command is going to be
used as an argument to another command, it must be enclosed by []. The C++
statement g(f(x)) is written g [f $x] in Tcl.

To add a new command to a Tcl interpreter, it is su�cient to call a function
in the Tcl kernel, specifying the command name and the address of the external
function which implements the command. Because string is the fundamental
data type in Tcl, the Tcl interpreter passes arguments to external functions as
arrays of strings, and expects the functions to return the result as a string. It
is usually necessary to add wrapper code which converts argument strings to
integers, �oating point numbers and other objects.

A.3 Using TIDE � a simple example

Suppose we have a library containing a class CDPlayer that allows us to use the
Compact Disc unit of a workstation to play music CDs. The class is declared in
cdplayer.hh, which is shown in Figure A.3.

class CDPlayer {

public:

CDPlayer(string cd, string audio);

void track(int number);

void play();

void stop();

void eject();

private:

// ...

};

Figure A.3. Declation of class CDPlayer.

The constructor takes two arguments which identify the CD driver and the
the speaker driver. To access this class from Tcl, we specify its interface in a
separate �le, cdplayer.tide, from which TIDE will generate the wrapper code,
see Figure A.4.

1Here we describe Tcl 7.6. A richer set of data types will probably be available in Tcl 8.
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class CDPlayer {} {

constructor {string string}

function void track {int}

function void play {}

function void stop {}

function void eject {}

}

Figure A.4. TIDE interface to class CDPlayer.

The contents of cdplayer.tide is actually a small a Tcl program. What each
statement means exactly will be explained in detail in Section A.7, but it should
be apparent that the �le contains the same information as cdplayer.hh in this
case, and that, in fact, it could be generated automatically. However, in more
complicated cases, the *.tide �les contain information that cannot be derived
from the corresponding C++ declarations alone.

The TIDE compiler, tidec, is invoked twice. First, the wrapper code for the
CDPlayer class is generated. Then, a Tcl package which can be loaded dynamically
by the Tcl shell is created:

tidec cdplayer.tide

tidec -package multimedia cdplayer.tide

tidec generates C++ source �les that are compiled into a shared wrapper code
library. The Tcl script in Figure A.5 shows how the CD player can be used. After
loading the TIDE library and the wrapper code library, an instance of CDPlayer
is created and ordered to play a track.

load {} Tide

load {} Multimedia

set cd [CDPlayer::CDPlayer& /dev/cd /dev/audio]

CDPlayer::track $cd 1

CDPlayer::play $cd

Figure A.5. Using class CDPlayer from Tcl.

As shown, TIDE commands are written fully quali�ed with nested names
preceded by their enclosing scopes and :: operators2. The reasons for choosing
this syntax instead of, say, $cd track 1, will be given in Section A.6.

A.4 Previous work

Several attempts have been made earlier to generate wrapper code automatically.
For example, the SWIG system [Beazley96] parses C++ header �les and turns

2When namespaces appear in Tcl, this syntax may be changed.
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them into wrapper code for Tcl or Perl. A similar approach is used in Itcl++
[Heidrish94] and vtk [Martin96]. Perl has a built-in extension interface language
XS with a C-like grammar. However, these tools only support a small subset
of C++, so in practice, they can only be used for libraries with very simple
interfaces or libraries that have been designed to work with a particular wrapper
code generator.

ObjectTcl [Sheehan95] also generates wrapper code automatically from an
interface speci�cation, but assumes that the interpreter has full control over the
creation and destruction of objects. That is a severe restriction which will be
discussed further in Section A.6. In contrast, SWIG, Itcl++ and vtk allow the
C++ library to take the initiative to create and destroy objects.

Other solutions, such as the one used in the ABC system [Manges94], require
changes to the C++ library code or partly hand-written wrapper code.

Some tools allow scripts to be called from C++ (for example Hush [Eliens95])
or make it possible to subclass existing C++ classes in the scripting language
[Sheehan95]. While that certainly can be useful, it is quite di�erent from the
problem discussed in this paper.

A.5 A more challenging problem

Let us take a look at the interface of the standard C++ list class [NCITS98]. It is
a good example of what kind of code one can expect to �nd in real-world libraries.
Actually, it is very likely that this and other classes from the standard library will
be used in the majority of library interfaces in the future, so we simply have to
be able to deal with it. Figure A.6 shows the declaration of the list class3.
This interface uses many advanced C++ constructs. For example, the list class
is a template, parameterized by the element type T and a memory management
help class, called Allocator. To avoid name con�icts, the class has been de-
clared in the standard library namespace, std. The class speci�cation contains
nested classes (the iterators) and nested type de�nitions (typedef). These nested
names occur in other declarations, e.g., in the declaration of iterator's base class
bidirectional_iterator. Overloading, const quali�cation and reference types
(types ending with a &) are also used in the speci�cation.

All parts of this interface should be accessible from scripts. If we want to call
library functions that take list arguments or return list values, we have to be
able to create such objects and to access them from scripts. None of the wrapper
code generators we have tested have been able to cope directly with a class like
this one. TIDE does not support every C++ feature either, but it does handle the
full list class interface, including the nested iterator (generalized pointer) types.
We will return to the list class and discuss the TIDE interface speci�cation
(Section A.7), show how the class can be used in Tcl scripts (Section A.8) and

3The declaration has been shortened. Also, the iterator types do not have to be classes
according to the draft standard document.
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namespace std {

template <class T, class Allocator = allocator<T> >

class list {

public:

typedef Allocator allocator_type;

typename allocator_type::size_type;

typename allocator_type::difference_type;

typename allocator_type::reference;

typedef allocator_type::size_type size_type;

typedef allocator_type::difference_type difference_type;

typedef allocator_type::reference reference;

typedef T value_type;

class iterator :

public bidirectional_iterator<T, difference_type> {

public:

iterator();

bool operator==(const iterator& x) const;

reference operator*() const;

iterator& operator++();

// ...

};

explicit list();

list(const list& x);

~list();

list& operator=(const list& x);

iterator begin();

iterator end();

size_type size() const;

iterator insert(iterator position, const T&);

// ...

};

}

Figure A.6. Declaration of class list.

look at the generated wrapper code (Section A.9). But �rst, we will explain our
choice of syntax and object representation in Tcl.

A.6 Representing C++ objects in the interpreter

The scripting language must allow us to create C++ objects, invoke their member
functions, and use them as arguments to other C++ functions or Tcl procedures.
It must also be possible to store objects or object references returned from C++
functions in Tcl variables. The most important part of the design is the choice of
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representation of C++ objects in the Tcl interpreter. In particular, it must be de-
cided whether interpreter resources (variables or procedures) should be allocated
to each C++ object. That will have a major impact on both the implementation
of the wrapper code and the resulting Tcl interface.

In most object-oriented extensions to Tcl, such as [incr Tcl] [McLennan95],
objects are represented as Tcl functions. An [incr Tcl] version of the CD ex-
ample in Figure A.5 could look like this:

CDPlayer cd /dev/cd /dev/audio

cd track 1

cd play

delete object cd

Here, CDPlayer is a function that represents the CD player class. When it is
invoked on the �rst line, it will create a new function, cd, which represents a
CDPlayer instance. On the second line, cd is invoked with the �member function
name� track as an argument, and cd is removed by delete on the last line.
The syntax feels object-oriented; the user will think of cd as an object, not as a
function. No other dispatch mechanism than a plain Tcl function call is required.
This solution has also been adopted by Itcl++, vtk and ObjectTcl.

Things get more complicated when pointers or references to objects that have
not been created by, or previously seen by the interpreter are returned from C++
library functions. In principle, whenever an object is returned from C++ as a
function return value or through a parameter, its address must be compared with
the address of every C++ object known to the interpreter. If the object has not
been seen before, it must be given a Tcl name on the �y. This is more complicated
than it may seem, because in the presence of multiple inheritance, a single C++
object can appear to have di�erent addresses depending on the type of pointer
used. Therefore, when an object pointer is looked up, it must be converted to
every known base class type. This is actually done by some systems, for example
Itcl++.

However, this does not solve the whole problem. If a class D is derived from
two base classes B1 and B2, the address of a D instance created by the client
library may �rst be returned as a B1 pointer (Figure A.7a), then later as a B2

pointer (Figure A.7b). There is no way the interpreter can see that the two
pointers actually refer to the same object, and the interpreter has to create two
distinct Tcl names for them. Later, the D pointer might be returned, and at that
point, the interpreter can tell that all three pointers refer to the same C++ object
(Figure A.7c). What should the interpreter do then about the multiple names?
This problem is a consequence of the rather weak object model used by C++
[NCITS98].

All of this can of course be avoided if we only allow the Tcl interpreter to
create objects. The interpreter will in that case know exactly which class each
object belongs to. However, such a constraint is in general not acceptable. Ex-
isting C++ libraries often create complicated data structures in a single function
call, and various access functions will return references to individual objects in
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(a)

(b)

(c)

B2

B1*
B1

D*
B1

B2

D

B2*

Figure A.7. Unequal pointers may refer to the same (complete) object in C++.

those structures. In fact, it is very common that library classes have no accessi-
ble constructors, and only allow so called factory methods [Gamma95] to create
objects.

An even more delicate problem is to release the resources (a Tcl procedure, a
hash table entry etc) associated with a C++ object when it is destroyed. Failure
to do so will cause the interpreter to grow inde�nitely and eventually consume
all available memory. The problem is that in general, the interpreter will not
know that an object has disappeared unless the object has been destroyed by the
interpreter itself. For example, if the Tcl program calls a client library function to
destroy a large C++ tree structure, the tree nodes may or may not be destroyed
recursively, depending on the semantics of the C++ function. Some of the objects
destroyed might also contain members for which resources have been allocated in
the Tcl interpreter. Garbage collection on the Tcl side is no option. Since any set
of characters can be composed into a Tcl name at any time, it is not possible to
verify that a Tcl name is no longer in use just by examining Tcl variables or the
Tcl stack.

Because of this, SWIG takes a di�erent approach. In the Tcl interpreter, a
pointer to a C++ object is represented by a string containing the object's type
and hexadecimal address. For example, a pointer to a CDPlayer instance at (hex-
adecimal) address aab050 will be represented by the string _aab050_CDPlayer_p.
The main advantage of using a pure string representation for pointers is that they
do not need interpreter resources that later have to be reclaimed.

SWIG references are equivalent to typed C++ pointers, and like C++ point-
ers, these strings will become �dangling� if the referenced object is destroyed. Just
as in C++, the programmer has to take responsibility for not using pointers to
objects that no longer exist. Following a dangling pointer will normally result in
a core dump.

This approach may seem unappealing, since a mistyped command can cause a
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Tcl interpreter to dump core. However, remember that we are actually using C++
libraries that have not been designed to be used from Tcl. The C++ programming
model, including the dangling pointer problem, will shine through the thin layer
of Tcl bindings that SWIG provides. Even without SWIG pointers, we would still
cause a core dump if we called a client library routine and broke its precondition
by giving it bad arguments such as an index out of range. Considering this and the
fact that the SWIG approach avoids the problem of releasing interpreter resources,
we have chosen the same solution in TIDE.

In TIDE, the C++ object and pointer models are exported unmodi�ed to Tcl.
Thus, the Tcl commands generated by TIDE comprise a direct, low-level interface
to the C++ code. Of course, it is still possible to wrap the TIDE commands in
another layer of Tcl procedures to make them safer (avoiding core dumps) or
to embed them in a speci�c object-oriented Tcl extension, such as [incr Tcl].
Actually, that would probably be a lot easier to do in Tcl than in C++. In many
situations, though, the commands generated by TIDE are safe enough to be used
as they are, for example in action procedures invoked through a graphical user
interface. In those cases, they will have a minimal run-time overhead.

The decision not to represent C++ objects as Tcl procedures rules out the
<object> <function> <args> syntax used in [incr Tcl] and other systems for
calling member functions. Instead, TIDE and SWIG use a straight Tcl procedure
call syntax <function> <object> <args>. In our opinion, this has the additional
advantage of giving member function calls and ordinary function calls identical
syntax.

So far we have discussed the string representation of object references. It is
also possible to represent the value (internal state) of some objects4 as strings.
For example, an integer 17 can be represented by the string 17 and the complex
number 1− 3i may be written (1,-3) or {1 -3}. We call these strings literals.

It is usually easier to work with literals than object references in Tcl. Built-in
Tcl procedures can only operate on literals. For example, in the Tcl command
while $condition body, $condition may be 0 or 1, but not a reference to
a boolean C++ object such as _a3c100_bool_p. Literals can also be passed
to external C++ functions. TIDE will automatically create a temporary C++
object from each literal argument before calling a C++ function. In the fourth
command in Figure A.5, CDPlayer::track $cd 1, the integer constant 1 will be
converted to a temporary int object.

However, there are situations when object references must be used. Sometimes
the identity of objects matters and some external functions need to return values
in reference parameters. There are also many classes that do not have literals, for
example streams, structures with cycles, and images.

In TIDE, objects returned from C++ functions are converted to literals by
default. However, if an ampersand is appended to a function name, an object
reference will be returned instead. The CD player class instantiated in Figure A.5

4What is said here about objects and classes also applies to all fundamental C++ types such
as characters, integers, and �oating-point numbers.
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is not likely to have literals, and therefore, the reference-returning version of the
constructor, CDPlayer::CDPlayer&, was used.

A.7 Specifying the list interface

Most of the wrapper code can be generated from the C++ declarations found in
header �les. In fact, SWIG, Itcl++ and vtk can parse C++ header �les. However,
none of these packages have implemented the full C++ grammar, so they will fail
on complicated declarations. Other systems, such as ObjectTcl, generate wrapper
code from interface speci�cation �les written in a special language (usually Tcl).

All systems occasionally need more information than the C++ header �les
can provide. For example, functions might have to be given other names in
the interpreter, certain templates have to be instantiated, and more semantic
information about parameters or return values might be required. If the wrapper
code is generated directly from C++ header �les, this information must be given
in auxiliary �les.

TIDE currently uses the same approach as ObjectTcl; every class and function
interface is speci�ed by Tcl commands in a separate �le. The speci�cation of the
TIDE interface to the standard list class is shown in Figure A.8.

The use command says that this speci�cation depends on the TIDE speci�-
cation of the fundamental types in tide/fundamental.tide and on the allocator
class template in tide/defalloc.tide. The name of the corresponding C++
header �le is given by header.

Template parameters can be declared for both classes and functions using the
-template option. The argument is a Tcl list of template parameters, such as
class T, const int or template<class T> class allocator5. list is param-
eterized by the element type T and a help class Allocator. The TIDE speci�cation
deviates a little from the C++ declaration: here, the class has only one type pa-
rameter and allocator_type is declared directly as a typedef name. This is not
at all necessary but simpli�es the TIDE speci�cation slightly and is more likely
to match the actual C++ declaration used in most existing implementations of
the list class6.

Base classes are speci�ed after the class name. list itself has no bases, but
the nested class iterator has. Virtual base classes should be preceded by the
keyword virtual.

The last argument to class is the body which declares all members. The
constructor command speci�es that a constructor with certain parameter types
is accessible, and that TIDE may generate wrapper code that depends on it.
Similarly, there is a destructor command which declares an accessible destructor.

The function command declares functions. When used in a class body, it

5Template template parameters are supported in principle, but have not really been tested
since few compilers implement them yet.

6Such as the list class that comes with
GNU g++ 2.7.2.
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use tide/fundamental.tide

use tide/defalloc.tide

header list

namespace std {

class -template {"class T"} list {} {

typedef allocator<T> allocator_type

typename allocator_type::size_type

typename allocator_type::difference_type

typename allocator_type::reference

typedef allocator_type::size_type size_type

typedef allocator_type::difference_type difference_type

typedef allocator_type::reference reference

typedef T value_type

class iterator {bidirectional_iterator<T,difference_type>} {

constructor {}

destructor

function -alias equal bool operator== {"const iterator&"} const

function -alias index reference operator* {} const

function -alias incr iterator& operator++ {}

# ...

}

constructor {}

constructor -alias copy {"const list&"}

destructor

function -alias set list& operator= {"const list&"}

function iterator begin {}

function iterator end {}

function size_type size {} const

function iterator insert {iterator "const T&"}

# ...

}

}

Figure A.8. TIDE interface to class list.

declares member functions. The �rst argument is the return type, the second is
the function name, and the third is a Tcl list of parameter declarations. The key-
words static and const may be used to declare static members (class methods)
and constant members, respectively. Functions can be given more descriptive or
shorter names in Tcl with the -alias option. For example, the C++ operator
members operator=, operator* and operator++ have been given the �standard�
Tcl names set, index and incr, respectively.

Interface speci�cations can be split over several *.tide �les, which can be pro-
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cessed separately and later combined into a single, dynamically loadable Tcl pack-
age. Template instantiation commands are typically given in a separate *.tide
�le:

instantiate_class std::list<int>

instantiate_class std::list<std::complex<double>>

A.8 Interacting with the interpreter

A.8.1 Using the list class

Suppose the Tcl interface of the standard list class de�ned in the previous section
has been successfully compiled and loaded into a Tcl interpreter. How can it be
used in scripts? Let us say that we have also created a Tcl interface to a C++
graphics library, and that the library contains a matrix class and an abstract
base class Shape from which all other graphical objects have been derived. Also,
assume that the interface of Shape contains a virtual (polymorphic) function,
transform, which applies a projective transformation de�ned by a 3x3 matrix
to a Shape object. The Tcl code shown in Figure A.9 creates a transformation
matrix and applies it to each element of a vector v of Shape pointers.

set mat [Matrix::Matrix 0.7 -0.7 0 0.7 0.7 0 0 0 1]

for {set i 0} {$i<[std::vector<Shape*>::size $v]} {incr i} {

Shape::transform [std::vector<Shape*>::index $v $i] $mat

}

Figure A.9. Transforming Shape* vector elements.

The size function returns an integer literal, so the loop condition can be
expressed with the built-in Tcl operator <. It is assumed that the index member
is an alias for vector<Shape*>::operator[]7.

For simplicity, we used a vector instead of a list in Figure A.9. Writing
the same code for a C++ list is a bit more complicated because list objects have
no indexing operator and must be accessed through iterators. The list class has
two member functions, begin and end, which return iterators to the beginning
and the end of a list. Since the iterator type has no literals8, we use the variants
begin& and end& which return object references, see Figure A.10.

The body of the loop in Figure A.10 is repeated until $iter points to the end
of the list. The std::list<Shape*>::iterator::index command (cf Figure
A.8) returns the element which $iter points to, in this case a Shape pointer.

7The name operator[] is not only clumsy, but the square brackets would have to be escaped
in Tcl.

8An iterator represents a position in a particular container, which is di�cult to represent as
a literal value.
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set mat [Matrix::Matrix 0.7 -0.7 0 0.7 0.7 0 0 0 1]

set iter [std::list<Shape*>::begin& $l]

set end [std::list<Shape*>::end& $l]

while {![std::list<Shape*>::iterator::equal $iter $end]} {

Shape::transform [std::list<Shape*>::iterator::index $iter] $mat

std::list<Shape*>::iterator::incr& $iter

}

Figure A.10. Transforming Shape* list elements.

The Matrix constructor called on the �rst line have no trailing ampersand. That
means a literal matrix is stored in $mat. When that literal is passed to transform,
a temporary C++ object will be created; using matrix references would be more
e�cient here. Note that the equal call in the loop condition must return a literal
since the value is tested by the built-in while command. Also note that the loop
condition must be written in terms of the iterator member function equal; a
simple string comparison (== in Tcl) will not work.

If possible, TIDE uses the standard C++ I/O functions operator� and
operator� to convert between literals and C++ objects. Should these operators
be unde�ned or unsuitable for a particular class, they may be overridden by C++
conversion functions written by the user. For the list class itself, list<T>, it is
easy to de�ne literal values provided that the element type T has literals. It is
natural to choose the same syntax as for built-in Tcl lists, for example {1 2 3} for
a list<int>9. The literal conversion functions are easy to write since most of the
code is already available as subroutines in the Tcl library. If $l is a list<Shape*>
literal, we can shorten the code in Figure A.10 to

set mat [Matrix::Matrix ...]

foreach p $l {

Shape::transform $p $mat

}

A.8.2 Temporaries

Temporaries are created automatically by TIDE when literals are passed as func-
tion arguments and when an actual argument needs to be type-cast to match
the declaration of a formal parameter. TIDE also creates temporary copies of
all objects returned by-value from C++ functions. These temporaries live un-
til the tide_block in which they were created exits. If there is no surrounding
tide_block, the temporaries will live until the program exits. Objects created
by new is guaranteed to live until they are explicitly destroyed by delete.

9This does not mean that Tcl programs should use the standard C++ list class instead of
the built-in Tcl lists. For most Tcl programming, the native Tcl types is a better choice. We
are merely demonstrating that if list instances are used in the interface of a C++ library, we
are able to create and manipulate them.
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In the example shown in Figure A.11, the C++ constructor complex(double
real, double imag) creates a temporary complex<double>. The ampersand in
the command indicates that a reference to this object is stored in temp. On the
next line, the copy constructor complex(const complex&)makes a copy of $temp
on the heap. A pointer literal referring to the new, dynamically allocated object
is returned and stored in c. The temporary will be destroyed when tide_block

exits, while the dynamically allocated copy will live until it is explicitly destroyed
by delete on the last line.

tide_block {

set temp [std::complex<double>::complex& 1 -3]

set c [new std::complex<double>::complex $temp]

} ;# $temp is removed here

delete $c

Figure A.11. Destruction of temporary objects.

A.8.3 Overloading resolution

The two constructors for the complex class in Figure A.11 have the same name;
the name is overloaded. That is accepted by TIDE as long as the number of
arguments di�er. If two functions take the same number of arguments, one of
them must given a di�erent Tcl name. Type based overloading was considered
but rejected for two reasons. First, it would have to be a run-time mechanism with
a signi�cant execution time overhead. (In C++ overloading resolution is done at
compile time.) Second, literals do not have an inherent type here. In C++,
17 is an int, 17.0L is a double, and "foo" is a const char*. In TIDE, users

can de�ne the literal representation for all classes, such as (1,-3) for complex
numbers and {1 2 3} for both vector<int> and list<int>.

A.8.4 Implicit type conversions

To make the generated Tcl procedures convenient to work with, a number of im-
plicit type conversions have been implemented. If B is an unambiguous base class
of D, a D pointer or reference will be implicitly converted to a pointer or reference
of type B. This also works with multiple inheritance and virtual base classes with
the same rules as in C++, and ambiguous implicit casts can be resolved with ex-
plicit static casts. Checked down-casts using the C++ dynamic_cast<> operator
are not directly supported, because TIDE would need information about which
base classes of T are polymorphic, i.e., has run-time type information, in order to
determine whether dynamic_cast<T*>(x) would compile. Instead, downcast are
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supported by means of a global template function:

template<class Base, class Derived>

Derived downcast(Base x) {

return dynamic_cast<Derived>(x);

}

with the TIDE interface

function -template {"class Base" "class Derived"} \

Derived downcast {Base}

which can be instantiated by the user for suitable types, e.g., a class Foo and its
base class Bar:

instantiate_function Foo* downcast<Bar*,Foo*> {Bar*}

instantiate_function "const Foo*" \

"downcast<const Foo*,const Bar*>" {"const Bar*"}

In Tcl, the resulting commands can then be used in the following way:

# instantiate Foo, cast to Bar*

set p [Bar* [new Foo::Foo]]

set q [downcast<Bar*,Foo*> $p]

There are also implicit const quali�cation casts, for example from int* to
const int* and from int** to const int* const*. Any pointer to object can
also be implicitly converted to void*.

A.8.5 Accessing the TIDE kernel

Since TIDE can be applied to itself, it is possible to create a Tcl interface to

the TIDE kernel itself. In fact, Tcl commands for pointer arithmetic, an address
operator & and a pointer dereference operator * have been implemented as Tcl
scripts using TIDE kernel functions.

The following code creates a temporary vector v. Its address is taken and
stored as a literal pointer in p.

set v [std::vector<int>::vector&]

set p [& $v] ;# the address of $v

In a function call, a pointer to an object will be implicitly dereferenced if nec-
essary. (This is a deviation from C++, but a very convenient one.) In the
following command, $p will be implicitly converted from a vector<int> pointer
to a vector<int> reference:

std::vector<int>::resize $p 10
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A.9 Generating wrapper code

How do one generate wrapper code for a complicated C++ library without ending
up implementing a complete C++ compiler? And how can one be convinced that
the generated wrapper code is portable and does not rely on a particular object
layout or pointer representation?

The approach taken in TIDE is to create a �meta library� with the same
structure as the client library we want to access. For every type used in the client
library, there will be a corresponding class, called a meta type, to represent it.
Similarly, every client class will be represented by an instance of a meta class.
If the client class is a template, so will the meta class be, with a meta type
parameter for every type parameter of the client class. In the same manner will
every namespace, function and inheritance relationship be represented by meta
objects. The idea is to create a meta library that is more or less isomorphic to
the client library and let the compiler do all the hard work.

Almost all of the meta objects that together implement the Tcl interface are
instances of prede�ned-de�ned ordinary classes or template classes. However, each
class in the client library will be represented by an instance of a unique meta class
generated by the TIDE compiler, tidec. The meta class will contain very little
code, primarily a constructor that instantiates representatives for nested classes
and member functions.

The most important meta entity is the meta type. Actually, a meta class is
a special kind of meta type which represents C++ class types and fundamental
types. Meta types for pointers, references and const quali�ed types are created
from meta classes and the meta type modi�ers Pointer, Reference and Const.
For example, the meta class of int is MetaType_int, and the meta type of int
const*10 is Pointer<Const<MetaType_int�. The meta type makes the C++
type information available to the TIDE kernel at run-time. It is also responsible
for converting between literals and C++ objects, an idea borrowed from the ABC
system [Manges94].

The wrapper code11 generated by the TIDE compiler from tide/list.tide

(Figure A.8) is shown in Figure A.12. A meta class MetaType_list which
represents the client class list has been generated. To avoid name con�icts,
the declaration is nested in the meta counterpart of the std namespace. The
meta class speci�cation consists of a number of nested typedefs, a nested meta
class for the iterator, and a constructor. Since list takes a type parameter,
MetaType_list takes a meta type parameter MetaPar_T. Template meta classes
must take meta type parameters because they need the extra information that
meta types carry.

Each typedef in the client class is mapped to a corresponding meta type
de�nition. If possible, TIDE expands the types. Since allocator_type was
de�ned as allocator<T> and TIDE had access to the speci�cation of that class
template, all nested type names could in this case be reduced to known meta

10A pointer to a constant integer.
11The code has been shortened.
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namespace MetaNamespace_std {

template<class MetaPar_T>

class MetaType_list :

public MetaClass<list<MetaPar_T::Type> > {

public:

typedef MetaType_allocator<MetaPar_T> MetaType_allocator_type;

typedef MetaType_unsigned MetaType_size_type;

typedef MetaType_int MetaType_difference_type;

typedef Reference<MetaPar_T> MetaType_reference;

typedef MetaPar_T MetaType_value_type;

class MetaType_iterator :

public MetaClass<list<MetaPar_T::Type>::iterator> {

public:

MetaType_iterator(MetaScope* scope, const string& name) :

MetaClass<list<MetaPar_T::Type>::iterator>(scope, name)

{

new Inheritance<MetaType_iterator,

MetaClass<bidirectional_iterator<

MetaPar_T::Type, int> > >(this, false);

// ...

new ConstMemberFunction1<

MetaType_list<MetaPar_T>::MetaType_iterator,

MetaType_bool,

Reference<Const<

MetaType_list<MetaPar_T>::MetaType_iterator> > >

(this, "equal",

list<MetaPar_T::Type>::iterator::operator==);

// ...

}

// ...

};

Figure A.12. Wrapper code for class list (continued on the next page).

classes and the meta type parameter MetaPar_T.

Meta classes are always derived from a TIDE help class, MetaClass. The
inheritance relationship between client classes is represented by the Inheritance
template class, which is instantiated in the meta class constructors, for example in
MetaType_iterator. The Inheritance constructor takes the meta class object
of the derived client class as an argument. The second boolean argument (false)
says that the client base class bidirectional_iterator is non-virtual.

The meta class constructor also instantiates representatives for member func-
tions, e.g., ConstMemberFunction1 in the MetaType_iterator constructor and
MemberFunction1 in MetaType_list. There is a separate function class template
for each combination of function type (void or non-void, member or non-member)
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MetaType_list(MetaScope* scope, const string& unqualified_name) :

MetaClass<list<MetaPar_T::Type> >(scope, unqualified_name)

{

// ...

new MemberFunction1<

MetaType_list<MetaPar_T>,

Reference<MetaType_list<MetaPar_T> >,

Reference<Const<MetaType_list<MetaPar_T> > > >

(this, "set", list<MetaPar_T::Type>::operator=);

new MetaType_allocator<MetaPar_T>(this, "allocator_type");

new MetaType_unsigned(this, "size_type");

// ...

}

// ...

};

}

Figure A.12. Continued.

and number of parameters. The meta types of the surrounding class, return value
and function parameters are passed as template arguments to the function class
template.

For each class name alias introduced by a typedef, a new instance of the
corresponding meta class is instantiated. For example, the name of the nested
type size_type, which is really an unsigned here, is added to the interpreter
by the last statement new MetaType_unsigned(this, "size_type") in Figure
A.12. Thus, the names unsigned and list<T>::size_type will be synonyms in
the Tcl interpreter for every type T.

Note that with this scheme, the nested iterator meta class and all member
function classes will automatically be specialized and instantiated in the list meta
class constructor whenever the list meta class is specialized and instantiated for
a particular element type.

References and pointers to objects are represented internally by generic point-
ers (void*). However, all object pointer casts are exposed to the compiler, so
that the pointer o�set will be adjusted if necessary.

All meta objects are held together by a Context instance, which also contains
a Tcl interpreter. It is possible to execute Tcl code in di�erent Context instances
and thus in di�erent interpreters.

A.10 Conclusions and future work

Currently, every TIDE interface speci�cation �le has to be written by hand. A
C++ parser that can at least partially generate these �les will be added in a future
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version of TIDE. Furthermore, there are still a number of C++ features not yet
supported by the TIDE compiler. For example, TIDE should be able to generate
access functions for global variables and member variables. Arrays, pointer to
functions and pointer to members should be better supported. (Currently, they
have to be wrapped in ordinary classes or typedef de�nitions.) Explicitly spe-
cialized templates are accepted, but could be handled more elegantly. However,
none of this should be very di�cult to implement.

Although TIDE was designed to work with C++ libraries that had been writ-
ten independently of Tcl, there are situations when one would like such libraries
to call a procedure written in Tcl, for example, when implementing callbacks or
observers [Gamma95]. The library will then take the initiative to call a function,
and the arguments must be converted from the C++ representation to Tcl strings.
The TIDE interface is actually bidirectional, but it will require some additions to
the TIDE compiler.

TIDE takes a radically di�erent approach to the wrapper code problem than
other systems. Its template based design has proven to be reliable, easy to debug
and very �exible. While there are certainly problems to �x and more features to
implement, TIDE can handle modern, real-world C++ libraries without requiring
source code modi�cations.

TIDE is available at

http://www.nada.kth.se/cvap/tide.html

and is distributed under the same terms as the Tcl/Tk source code. The code
have been tested with GNU g++ 2.7.2 and Tcl 7.6 under Sun Solaris 2.5.
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