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Introduction

Mathematical modelling of the visual process was the starting point of projective
geometry 500 years ago. In this paper we return to this problem and, following
Pliicker [13] and Grassman [5] we develop a line geometric representation of the
visual operator S regarded as the projection of P}(R)\{A} from the point A (the
pinhole lense) onto the plane w (the retina) induced by the set of lines through A.

This is the natural first order
approximation of monocu-
lar vision and it is usually
referred to as the perspec-
tive transformation (to be
carefully distinguished from
a perspectivity in projective
geometry).

Since edge detection is of fundamental importance for the visual process and
since linear edges abund in a world of man-made objects, the line geometric
representation of S provides a natural framework for studying many of the visual
inverse problems that arise in the recovery of 3D information from 2D images.

For the sake of convenience we state in this paper the necessary background ma-
terial from projective geometry. Most of it is presented in any standard textbook,
e.g. [2], [4] or [20]. The line geometric prerequisites are partly developed here and
partly stated as facts. The reader is referred to [8], [9] or [15] for further information
on this subject.

Real projective space

The real projective space P3(R) or IP? for short is constructed from the ordinary
affine 3-space [E® by the adjunction of a new element 7, called the plane at infinity,
which intersects each of the old planes in its corresponding line at infinity, and
each of the old lines in its corresponding point at infinity.

The affine plane 7 with its added line at infinity is called the projective plane «,
and the affine line p with its added point at infinity is called the projective line p.

Since nearly all lines and planes considered here will be projective, we will often
drop this adjective and refer to them simply as the line p and the plane © when
they are considered as embedded in P* and as P! and P? when they are considered
intrinsically.
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The projective plane P?

The need to projectify the affine plane arose from studying the painter’s prob-
lem: when an open planelike landscape was depicted on a canvas, certain points
appeared out of nowhere, forming a line of vanishing points — the horizon line.
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Figure 1

The mathematical model of this process — mapping the points of a plane 7 onto
the points of another plane w by perspection from an exterior point A — is not
even defined if 7 and w are affine. We see from Figure 1 that just as the points on
the line h appear out of nowhere, the points on the line k have nowhere to go!
Excluding these strange lines, the painter’s map is quite well behaved. In fact, it
is bijective:

m\{k} —» w\{h}

Projectifying 7 and w clears up everything and gives us a bijection:
T w

The line k in 7 goes into q., (the line at infinity) in w, and the line h in w comes
from p_, (the line at infinity) in =.

Observe how p,, and q,, correspond precisely to the planes through A that are
parallel to 7 and w respectively, while all the other planes through A cut both =
and w in affine lines.

The affine planes through A thus correspond bijectively to the lines of the projec-
tive plane 7, and in the same way the affine lines through A correspond bijectively
to the points of the projective plane .

Note that this correspondence is such that the line of intersection of two planes
through A corresponds to the point of intersection of the corresponding lines of .
Hence, the points and lines of the projective plane can be modelled by the lines
and planes through a fixed point in affine 3-space with their usual relations of
incidence. We shall see in a moment how this fact can be used to introduce
projective coordinates in IP2.
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Duality

The greatest advantage gained in projectifying the affine plane E? is the fact that
in the projective plane P? the point and the line have a totally symmetric (or
dual) relationship. Two elements of one kind determine one element of the other.
In fact, each axiom of P? has a dual counterpart, obtained by changing the word
point into the word line and vice versa.

Duality is often indicated by writing dual statements in parallel columns e.g.

two different points two different lines
are on one line are on one point
the points on a line the lines on a point
form a range form a pencil

Since the axioms of IP? occur in dual pairs, it follows that the set of axioms as a
whole is invariant under dualization. Hence each theorem has a dual counterpart,
the proof of which can be obtained mechanically from a proof of the first part by
dualizing each step in it. This pleasant fact is often referred to as the principle
of duality.

Of course the principle of duality is not confined to P? but is valid in any P" with
appropriate modification.

In P3 the point and the plane are dual elements:

three different points three different planes
are on one plane are on one point

while the line is self-dual, having two dual aspects (the ray and the axis):

two different points two different planes
are on one ray are on one axis

the lines on a point the lines on a plane
form a star form a plane system

How the duality principle in IP" creates a correspondence between its different
Grassmanian manifolds is hinted at in Appendix 2.
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Projective point coordinates

To introduce a projective coordinate system in P? we choose any triplet of non-
collinear points and call them the vertex 1, 2, 3 of the coordinate triangle (C.T.).

Then we choose
any point U, not on
any of the sides of

the C.T. and call it
the unit point.

Let us think of

P’ = {7} U{p}

as the affine plane
7w with its added
line at infinity p_,
and let # be em-
bedded in E? (Fig-
ure 2). Figure 2

Choose a point O outside of 7 in IE® and vectors e, €;, €3 based at O and directed
towards the points 1, 2, 3 in {7} U {p,}, and adjust their lengths so that their
sum

(1) e=e1+e2+e3

is directed towards the unit point U.

As we indicated earlier P? can be modelled by the non-zero subspaces of the linear
space E2 of affine vectors based at O. Since the vertices 1, 2, 3 of the C.T. were
chosen to be non-collinear, the chosen vectors {e,, e;, €3} form a basis of E3 called

B.

We now define the projective coordinates [X]c.1.u. of a point X € P2, relative to
the chosen Coordinate Triangle Unitpoint configuration: They are the ratios of the
B-coordinates

[X]B = (21, T2,3)

of any non-zero vector x € E} on the line through O that intersects P? in the
point X. Hence

[Xletu. = (21 : 221 23) = (pz1: p22 pz3) whenever p # 0.

Now, the projective coordinates of the point X are well defined, because they
depend only on the choice of the C.T.U. system and not on the choice of the point
O or the base B (as long as the sum — unitpoint condition (1) is fulfilled). The
verification of this fact is an instructive exercise which is left to the interested
reader.
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From Figure 2 we immediately get

[1)cru.=(1:0:0)
[2lctu.=(0:1:0)
[3]C.T.U. = (0 :0: 1)
[Ulcruv=(1:1:1)

Any linear homogeneous equation
a‘z; =0 (tensor notation)

describes a plane on O in E2 and hence a line of IP?. Note that the sides of the
C.T. are described by the planes z; =0, :=1,2,3.

If the points A and B of P? are represented by the vectors a and b of E}, we
see that as A\ and g vary over R, the plane Aa + pb (as a family of lines in
E2)) represents the line AB (as a family of points in IP?). These points thus have
projective coordinates

(2) ((May + pby) : (Aaz + pby) : (Aas + ubs))

the ratio (A : ) being fixed for each point.

Note that we must exclude
the value (\,u) = (0,0)
since it does not give us a
line in E},.

Hence (A : p) are projec-
tive coordinates of a point
X in P, and changing the
names of the basevectors a
and b to e; and e; in accor-
dance with Figure 2 we get
the situation of Figure 3.

Figure 3

Returning to P?, let us consider it again as

P? = {7} U {Ps}

with 7 embedded in E? (Figure 2). By a suitable choice of the C.T.U. system,
we obtain a correspondence between projective coordinates of P? and cartesian
coordinates of 7 (Figure 4).
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Figure 4

Here B= {ey, €;, €3} is an ON-basis for E}, and the affine plane = is parallel to
the affine plane z3 = 0, determined by e; and e;. These two planes intersect in
the line p_, which therefore has the equation z3 = 0 in projective coordinates.

Note that p_ contains the vertices 1 and 2 of the C.T. while vertex 3 becomes
the origin of the corresponding cartesian coordinate system in 7 (called 7-cart).
Note also how the unit point U projects from vertex 2 and 1 of the C.T. to create
the units U, and U, on the cartesian z— and y—axes. Let (21, 22,3) be the B-
coordinates of a non-zero vector in E}. The affine line on O that it determines
will intersect the affine plane 7 if and only if z3 # 0. Assuming this to be the case,
the point of intersection A will clearly satisfy

[Alctu =(z1:22: z3)

Ty T2

Alp = (—, —=,1

(3) 4le = (252
L
[A]fr—cart- (xs’a:;;

Conversely, starting with a cartesian coordinate system in 7, we can always obtain
projective coordinates in {7} U {p,,} by interpreting the cartesian system as part
of a projective C.T.U. system as in Figure 4.

Algebraically this amounts to introducing new variables z1,z2, z3 by letting

leading again to (3).

Of course, the analogous constructions can be carried out in any P" to obtain a
projective point coordinate system.
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In P2 we get the following correspondences:

P’ ES
(4) points lines on O
lines planes on O
planes 3-spaces on O

Hence, given any three non-collinear points X,Y, Z in IP?, the plane they determine
consists of all points with projective coordinates:

(5) Ax;+py;+92; , 1=1,...,4

the ratio (A : g : 9) be-
ing fixed for each point and (0:0:1:0)
(0 : 0 : 0) being excluded.

In IP? the C.T. is of course a
tetrahedron (Figure 5) and
the unit point U is any cho-
sen point not on any of its
sides.

(1:0:0:0)

Figure 5
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Algebraic aspects of duality

It was Julius Pliicker who first dualized the cartesian plane algebraically, and
treated points and lines on an equal basis. He observed that there are two sym-

metric and equally valid points of view:

If u and v are constants
and r and y are variables
then
ur+vy+1=0
is the equation
of the line(u,v)
in point coordinates
(6) excluding
the pencil of lines
on the origin
of the coordinate system
and the line at infinity.

If the points
(z1,%) and (z2,¥2)
are on the line
az+by+c=0

we must have

az; + by +¢c=0
aza+ by, +¢c=0

The condition
that these 3 equations
be consistent

z y 1
Zzy Y1 1 =0
2 ¥y 1

is the equation
of the line
joining the two points.

~ o A

N\
ZINS

If u and v are variables
and z and y are constants
then

ur+ovy+1=0

is the equation

of the point(z,y)

in line coordinates
excluding

the range of points

on the line at infinity

of the coordinate system
and the point at the origin.

If the lines

(uy,v1) and (uz,v;)
are on the point
au+bv+c=0

we must have

au; +bvy +¢c=0
au, +bvy+¢c=0

The condition
that these 3 equations
be consistent

u v 1
Uy M 1|=0
Uy Vg 1

is the equation
of the point
joining the two lines.

N s N



Ambjorn Naeve 9

Projectifying (z := z/z, y := y/z) to the natural C.T.U. extension of the
cartesian coordinate system (Figure 4), the exceptions (6) disappear, and the
point/line duality in P? becomes complete:

If u, v, w are constants
and z,y, z are variables
then

uz+vy+wz=0

is the equation

of the line(u: v : w)

in point coordinates
with no exception at all.

If the points

(z1:9:2z1) and (z2:y2: 22)
are on the line

az +by+cz=0

we must have

az; + byl +c¢z,=0

azy + by +cz, =0

The condition

that these 3 equations
be consistent

T Yy =z
Ty y1 oz |=0
Z2 Y2 22

is the equation of the line
joining the two points

~ » N

If u, v, w are variables
and z,y, z are constants
then

ur+vy+wz=0

is the equation .
of the point(z : y: z)

in line coordinates

with no exception at all.

If the lines

(u1 :v1 : wy) and (uz : v2 @ W)
are on the point
au+bv+cw=0

we must have

au; + bv; +cw; =0

aug + bvg + cw, =0

The condition
that these 3 equations
be consistent
u v w

Uy v wy
Uy V2 Wo

=0

is the equation of the point
joining the two lines

~ e AV

(7) uz +vy+wz=0

is called the tncidence relation
of point and line
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Figure 6

Let us call the C.T.U. system of Figure 4 a Projectified Cartesian System (P.C.S.).
The relation between the unit point U and the unit line u of a P.C.S. in IP? is shown
in Figure 6.

This is a special case of a relation called trilinear pole/polar between a point
and a line in P? with respect to a selected triangle.

Trilinear polarity and its counterpart in P* (T-linear polarity) are discussed in
Appendix 1.
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Projective hyperplane coordinates

Dualizing the C.T.U. system for points in P" we get the c.t.u system for dual-
points in P". Dual-points (or hyperplanes) are the missing-1 dimensional linear
objects of P".

In P", the C.T. is of course a (n + 1)-point simplex. Since each

(8) of its points avoids exactly one of its hyperplanes, we can dualize
it into itself by mapping each point (vertex) onto its avoiding
hyperplane and vice versa.

This turns our C.T. into a c.t. in a natural way that is especially well suited to
handle duality algebraically. But this is not enough to ensure the bilinear type
of incidence relation (7) between point and hyperplane, which creates complete
algebraic duality.

For this to happen, we must in addition choose the unit point
(9) U and the unit hyperplane u in a T-linear pole/polar position
relative to the C.T. (Appendix 1).

Let us agree to call a C.T.U. system and a c.t.u. system dually unified if they
are related according to (8) and (9). Hence we can state the following fundamental
fact:

If X and w are a point and a hyperplane in P" and if

[X]C.T.U. = (-"31 R A -’L‘n+1)

[Wletw = (@ s 0?1 0™

are their projective coordinates in two dually unified systems, then X and w are
incident if and only if

(10) Wri=wn +wlze . Wtz =0

The proof this fact can be found in [2].
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The projective point
coordinate system in P>

The projective plane
coordinate system in P?

[X]ecru=(z1:22: 23 : 24)
®

Equation /

of joint
position:

w‘:c.- =0

Tetralinear pole/polar rela-
tive to the C.T.

N

Unitpoint

unitplane

[Uleru=(1:1:1:1) [u)etn=(1:1:1:1)

not on any plane of the C.T.

not on any point of the C.T.

~ e Y e N

Figure 7
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Collineations

Having thus established a coordinate system for P? we are now ready to study
maps of P? into itself.

Given a non-singular 4 x 4 real matrix (af)
a map

P’3X+— Y eP®
can be constructed by letting
(11) vi=ofz, , i=1,...,4
Such a map is called a collineation.

The following two statements are fundamental facts of projective geometry in P2

(i) There is exactly one collineation that maps
any 5 generic* points onto any other 5 such
points.

(i1) Every map P* — P® which bijectively re-
lates points < points and lines < lines is a
collineation.

Note that (i) implies that each change of coordinate system is given by a unique
collineation. Hence (11) can be interpreted either

on a fixed background

as a change of image alibi
viewpoint

or
as a change of background} alias

on a fixed image viewpoint

* no 4 of which are in the same plane
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The visual operator in point coordinates

Let us now consider the perspective trans-
formation S

12) PA\{4}3X 2 Yew

All points of the line AX exept A are
mapped onto Y which is the point of in-
tersection of AX with the plane w.

Since Y is on the line AX, by (2) its coordinates can be expressed as
(13) yi=Aa;+puz; , t=1,...,4

for some real numbers A and u with fixed ratio. (Note that since A ¢ w we must
have u # 0).

Moreover, since Y € w we get

(14) w‘y,- =0

Substituting (13) into (14) gives

(15) w'(da; + pz;) =0

Since A ¢ w implies w'a; # 0 we can solve (15) for A:
i

wT

(16) A=

-w"ak“
Plugging (16) into (13) we get

w"ak

p yi=(—wla+ufad)e; , i=1,...,4

(17)

where 6/ is the Kronecker delta function.

Letting 8; = w’a; we finally get in matrix notation

i#i
h -B Wwla; wia; wiaq 7,
(18) ol v | = w:ag - wia; wia, Tq
Ya w as was —533 wias z3
Y4 wlay w?aqy wiay —P4 Z4
where p = —w*a;/p is a non-zero real factor of proportionality.

Denoting the 4 x 4 matrix in (18) by C = (cf) we have thus found a matrix
representation for S. Let us examine its structure a bit closer.
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Since the coordinates of X and Y in (18) are homogenous, the matrix AC will of
course also represent S for any real A # 0. If Y is any point in w, we have w'y; =0
and a simple calculation using this fact gives

Yi Y
19 Y2 | = —ig | V2
(19) ¢ Y3 WLy
Ya Ya

Hence (y;) is an eigenvector of C with non-zero eigenvalue —w'a;, which reflects
the fact that S(Y) =Y for any point Y € w.

Since w contains 3 non-collinear points (whose coordinate vectors by (2) are linearly
independent) C has 3 linearly independent eigenvectors with non-zero eigenvalue.
Hence we must have

(20) rank C > 3
But
a1 0
. a9 — 0
(21) C as - 0
a4 0

which together whith (20) means that

(22) ker C = {A(a;): X € R}

Hence ker C corresponds to the forbidden point A and we have
C(A(@) + p(z:)) = AC(a;) + pC(z:) = pC(z:)

reflecting the fact that
S(AA + pX) =5(X)

Also, it is easily verified that

(23) C? = —w'a,C

Hence C is projectively idempotent reflecting the fact that
§?=S

Let us recall the expression (11) for a collineation:

P!3X+—YeP?
yi:a?xk s Iafliéo

Comparing this to the expression (18) for a perspective transformation:
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P\{4A}3 X +— Y ecwCP?
vi=clze , |cf|=0

we see that it is natural to call the latter map a singular collineation, especially
since its nullspace by (22) corresponds to its restricted domain.

Notation: The perspective transformation P3\{A} S, w will be
called S4 and its representative matrix (18) will be
called C4.

Fact: For each point A = (a;)} , a; # 0 Vi, there are 4
canonical projections onto the 4 planes of the C.T.

Using (18) we can express their matrices:

0 0 0 0
1_ (02 -a, O 0 \
AT as 0 Qa3 0
\as O 0 —a; ) 3
—a; a3 0 0
Ci= ( 0 0 0 0 \
AT 0 as =—a; 0
\ 0 a4 0 —az / 2
(24) 4
(—-az 0 a O )
3 _ 0 —asz as 0 )
AT 0 0 0 0
\ 0 0 a4 -—a; /
[(—as 0 0 a) 1
4 __ 0 —Qa4 0 as
AT 0 0 —Q4 Qg
\ 0 0 0 0]
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Line geometry

Having thus developed a projective point representation of the perspective trans-
formation S, let us remind ourselves that we want to use it to map lines. Hence
we would like to have a representation of this operator that tells us immediately
what happens to a line p in P? when it is mapped by S% , i.e. which gives us
directly the position of the image line S4(p) in the plane w without having to
compute it by first mapping two points on p.

In order to achieve this we must abandon our treatment of lines as collections of
points and start to look at them as basic elements of our space. This was the idea
of Julius Pliicker as presented in his book Neue Geometrie des Raumes gegriindet
auf die Betrachtung der geraden Linie als Raumelement (1868). This subject has
come to be known as line geometry. Before making use of it we will present a
brief overview of the elementary aspects of projective line geometry of P2.

Ray coordinates of lines in P’

A line p in P3? is determined by two different points X and X' with projective
point coordinates (z;)? and (z})}.

From the six 2 X 2 minors of the matrix

(25) ( Ty T, Ty Ty )

Ty T2 T3 T4
we define, for the line p its six homogeneous projective ray coordinates:

! [ — 1 ! —_— li !
(26) Op1 = 21Ty — TyTy , OPy = TpT4— Tyly Op3 = T3T4 — T4T3
Ops = TaTh — T3Th , Ops = TaTy — T1Z3 , OPe = T1T3 — T2T,

where ¢ is an arbitrary non-zero real factor. These coordinates are denoted (p,)}
or simply (p,) since from now on all latin indices will range from 1 to 4 and all
greek indices from 1 to 6.

Consider the determinant identity
14
Z), T; T3 I,
T1 T2 T3z T4

T, zT; Ty Ty
Zy T2 T3 T4

Laplace expansion of the left hand side gives the following identity for the ray
coordinates:

(27) P1Pa+ P2ps + paps = 0
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The ray coordinates of p are independent of the position of the two points X and
X' along p (as long as they don’t coincide) because (cfr (2))

; = az; + Pz ’
(28) y: , ﬂ,, with d= "‘"‘,|¢o
Y = a'zi + Bz pB
gives
vk — iy = d- (zi3k — T42)

. . . . 3
Axis coordinates of lines in P

The line p is determined also by two different planes w and w’ with projective
plane coordinates (w') and (w"). The ray coordinates that were defined in (26)
can then be expressed as

(29) { Apr = W = WPw? ) Ap = WPt — Wl Aps = wlw? — WiW!

1 4 2 4 3 4
Aps = whwt — W' ) Aps = wwt — Wt Aps = Wit — WW?

(A arbitrary real # 0)

This follows from the equations of joint position (10) between the points X and
X' and the planes w and w'.

If we define (cfr(26)) for a line p the homogenous projective axis coordinates (7*):

n, 4 4 1 2 2 4 4 2 3 13 4 1 3

(30){a7r‘=ww—ww, om? = wwt - W, ond =Wt - W

3 2 1
omt = W —WWw? |, on® =Wt —Wwlw?, on® = wlw? - Wi’

then, comparing (29) and (30) we have for the same line p:

(31) - (Pr:p2:ps:paips:pe)=(nt:n®:x:nt i n? i n®)
This can also be expressed as

(32) T2 = Ppt3 (mod 6)

Figure 8 illustrates the duality between the ray and the axis systems of line
coordinates.
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From the projective point co-
ordinate system we construct

The ray coordinates for
lines in P3

The edges of the C.T.
have the coordinates

p,=(0:0:...:1:...:0)

/

position u

From the projective plane co-
ordinate system we construct

The axis coordinates for
lines in P3

The edges of the C.T.
have the coordinates

7 =(0:0:...:1:...:0)

;

position u

Figure 8

19
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The relations of a point and a plane to a line in P°

The line p = (p,) and the
point Z = (2;) determine the
plane w = (w') with coordi-

nates

1
2
3 |=
4

unless

the product is zero
in which case
the line p contains

nates
0 -p3 p ps z z 0 - =?
p3 0 -p ps || 2 zz |_| = 0 -m
-p2 ;0 pg 23 z3 w2 ' 0
-p4+ -ps -ps O 24 24 -t x5 -xf
unless

the product is zero
in which case

the point Z the plane w

~ s A~ ~ v A

Proof: (We will prove the left part. The right part is the dual

(W) = (+

statement.)

Let X = (z;) and X' = (z}) be two different points on
the line p, and let Y = (y;) be an arbitrary point in

P2. By (5) Y is in the plane w (determined by points
Z,X,X') if and only if

i Y2 Y3 Vs
Z1 22 23 24 =0
Ty T2 T3 T4
zy Tz Ty T4

By (10) the plane coordinates of w can be calculated
by expansion along the first row of this determinant.
We get

22 23 24 21 23 24 21 22 24 2
o T3 Tg4 |:—| Ty Tz ZTq || 21 T2 24 |- T2
zy, =y T Ty Ty T4 zy Ty T4 z]

Expanding each of these four determinants along the
first row and making use of (26) gives (33).

Finally, w is undetermined & all w* are zero < the line
P contains the point Z.

the line p is contained in

22
I3
)

The line p = (#°) and the
plane w = (w') determine the
point Z = (z;) with coordi-

<3
Z3

20

EEEE
o W =
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The intersection of two lines in P°
Given two lines p = (p,) and q = (g,) we define

(34) P4 = P14+ P2gs + P3ge + Pag1 + Psq2 + Peqs

Claim: Two different lines p and q intersect if and only if
pq=0 .

Proof: Let X, X’ and Y,Y’ be two pairs of points on the lines
p and q respectively. Then the intersection exists if _
and only if the determinant | X, X', Y,Y’| = 0. Laplace
expansion along columns one and two gives (34).

If the lines p and q intersect, we have from (33):

Their common point:

(36)  ((geps — gsPe) : (g4Ps — q6Pa) : (gsPs — 9aps) : (q1P4 + g2Ps + g3Ps))

Their common plane:

(37)  ((gsp2 — q2p3) : (@1ps — gsp1) : (9271 — @1P2) : (9aPr + ¢5P2 + G6P3))

Note: If we permute the vertices of the coordinate tetrahe-
dron (Figure 8) and renumber the ray coordinates p,
and g, accordingly, we get permuted versions of the
formulas (36) and (37). It may happen that the original
versions of these formulas produce the forbidden result
(0 : 0:0:0) when applied to two intersecting lines.
This nuicance can always be eliminated by a suitable
permutation.
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Collineations in ray coordinates

Returning again to the collineation (11)
PP3X+— XeP?

we recall its expression in point coordinates

(38) EFi=afzr , |af|#0

Since it maps a line p to a line p

Xl

p

we can express its action on lines in ray coordinates.
From (26) we have for the image line p :
~ ~l ~ a~fl ~ ~
(39) op =% T4~ %%, , op=... , OPps=... ,
Plugging (38) into (39) we get
= k1 o k_ 1 Foo
op = (agz;)(agz;) — (agzi)(oqz;) =
1.0 2.1 31 41\ .1 2 3 4
= (a2, + ajz; + oyz3 + oz )(ayzy + afzs + ajzs + agzy)—
1.7 2.1 3_s 4_1 1 2 3 4
— (agxy + a3z + ayzy + agry)(a;z1 + ajzs + ajzs + ajzs) =
1 4 4_1\_1 1. 4 4 1\t
= (@10 — 00 )7 T4 — (0gag — ajag)z T+
2 4 4_ 2\t 2 4 4 2\ 1
(40) + (ajog — ajag)zsyzs — (ajog — eqag)z T+
3 4 4 3\t 3 4 4_3\_ 1
+ (ajag — ajag)z3zs — (@yag — ajag)Ty T3+
32 2 3 ' 3 2 2 3 '
+ (ajag — ajag)zazy — (ayay — ajayg)zszy+
1.3 3.1 ' 1.3 3.1 '
+ (e ay — ajay)z3z) — (gay — ajag)z 23+
2 1 1.2 ' 2 1 1.2 '
+ (ajay — ajaq)z1z; — (@yay — @ 0g)T,T) =
_ 2 3 4 5 6
=" +7Mpz+ NP3+ NPa+ NP5+ NPs

In the same way we get the corresponding expressions for 5, ...,0ps and we have
the following expression for a collineation (38) in ray coordinates:

(41) ﬁp=7:P# y (p=1,...,6)

The 36 coefficients 7 in (41) are determined by the 16 coefficients a} in (38)
according to the following rule:
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(7 =ojaj-—afel , ... yi=ozer—asa;
n=——————— r=———————
@ (NTTTT T HE— T
7 =ojai—ajef , ... Ai=ajei-oje; , ...
n=——————— Y=———————
\ n=————— r=——————
The dotted expressions (...) fol- The dashed expressions (—) fol-
low from the ones to the left low from the ones above by the
by the cyclic permutation of the cyclic permutation of the upper
lower index 1, 2, 3 while keeping index 1, 2, 3 while keeping fixed
fixed all the index 4. all the index 4.

Since we will make use of it later, we have taken the trouble to write out (42)
explicitely in Table 1.

Table 1: v# as a function of of

W=olai-afal  s=olai-alal 2} =alei- o)
W =olei-afe]  si=olai-afel = alal-ale]
W=olei-ale]  sf=ofai-afe] 1= afel— el
wi=alei-alal  sf=alal-alal = aelale]
w=clal-alel  f=alai-afel i =aled-odel
W=olel-alal  f-alal-alel  f=alel-alel
d=olei-alel  l=alal-afel i =alel-alel
d=elei-alel  m-olof-afel i =olel—ale]
R=olei-alel  m=olei-afel  1i=ael—ale]
vi=alel-alal  af=clai-alel  f=afed-afel
K=olel-alal  af=olel-alal  si=alel-ale]
6 __ 1.2 2 .1 6 1.2 2 1 6 1.2 2.1

T4 = Qa3 — Qg Vs = Q0 — Q3 Te = X Q; — O Gy
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Sixvectors

A sixvector p is by definition a sixtuple (p,)¢ of real numbers that is transformed
by a collineation according to (41).

Given two sixvectors p and q, we define their product as in (34):

(43) P4 = P1g4 + D295 + P3ge + Paq1 + Psq2 + Pegs

A sixvector p is called:

singular fpp=0
non-singular if pp#0

By selecting a coordinate system for lines in P3, one can establish the following 3
facts:

(44) (i) every line in IP? gives a non-zero singular sixvector
(through its line coordinates in the selected system)

(i1) every non-zero singular sixvector gives a line in P?

(45) (by interpreting it as line coordinates in the selected
system)
(46) (#41) two non-zero singular sixvectors give the same line if

and only if they are linearly dependent

Statement (1) is an immediate consequence of (26), (27) and (41). The proof of
statements (ii) and (i1:) is straightforward, but we omit it here. The reader is
referred to [8] ch. 1.

The following operative rules for sixvectors are easily established (p, q, r sixvec-
tors, A real constant):

p+a=q+p ; Ap+q =Ap+2q

(47)
Pq=qp ;  plg+r)=pqg+pr
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. eye . . 3
Linear families of lines in [P

Consider a point X and a plane w in P>. The set of lines on X is called a star
and the set of lines in w is called a plane system. If X € w the set of lines on X
and in w is called a pencil.

By (45) and (46) two linearly independent singular sixvectors p and q with pq =0
determine two intersecting lines and thus a pencil. It is easily seen that this pencil
can be expressed as:

(48) {Mp+ X2q | (A1, A2) # (0,0)}

(Note that (A p+ A2q)(A\1p + A2q) = 0)

In the same way three linearly independent singular sixvectors p, q, r with
pPq = qr = rp = 0 determine three pairwise intersecting lines in P? that do
not belong to the same pencil (since their sixvectors are linearly independent).

Hence
if p, q, r are if p, q, r are
on the same point in the same plane
they determine they determine
a star of lines a plane system of lines
given by: given by:

(49) {Mp+ g+ dar | (A, A2, A3) # (0,0,0)}
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The visual operator in ray coordinates

Having completed our brief introduction to projective line geometry, we are now
in a position to apply it to our study of the visual operator, viz. the perspective
transformation

s4:P\{A}) —mw , A¢w

First of all let us observe that in changing the representation of a collineation (38)
from point — to ray coordinates, our derivation of the transformation formula
(42) never made use of the fact that the collineation was non-singular. Hence (42)
must hold also for singular collineations such as S4, and we can therefore use it to
determine the representation of this operator in ray coordinates.

Secondly, in doing so there is no loss of generality to assume that the coordinate
tetrahedron (Figure 7) has been chosen to contain w as one of its planes, say
=(1:0:0:0)c¢n.

This will help us to avoid unnecessary computational complexity and make the
structure of the resulting representation more clear.

Consider therefore the perspec-
tive transformation

SL:P\{4} - w

By (24) it is represented in point
coordinates by the matrix

0 0 0 0
) . a; =—ai 0 0 _ k
Ca= az 0 —a O = (o
ag O 0 -aq

Note: Agw=a; #¥0
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From (42) or Table 1 we determine its representation in ray coordinates:

"m=0 ‘Y; = —a1a2 ‘yé = —~a;as3
% 7 =a 7% =0
” 7 =0 7 =al
% =0 v3 =0
% 7 =0 V3 = a1a4
’Yf = 7’? = —a,a4 ‘72 =0
(50)
1_ 1 1_
Vs T = Ye
"= 7= Ve =
e v = Y =
7 = af 7 =0 Yo =
v; = a1a; 7% =0 % =0
72‘:“1“3 ‘7§=0 ’Yg=0
In matrix form we get:
0 0O 0 O 0 0
—a1az a? 02 ) 0 0 —a1Qy4
5 Bl — s | —aas 0 af 0 aja4 0
(51) Ca=1% 0 0 0 a aa; aa;
0 0O 0 O 0 0
0 0 0 O 0 0

Comparing with (41) we see that the matrix C} represents S} the following way:
Given a line p = (p,), the ray coordinates (g,) of the image line q = S(p) are
given by the matrix product

(52) 9o = YpPu

Having thus arrived at the line geometric description of the visual operator promi-
sed at the outset of this paper, let us examine its algebraic structure to see how it
reflects the geometric properties of the perspective tranformation.

First, since a, # 0 (otherwise A would lie in w and S§% would not exist) we see
from (51) that G}, has rank = 3. Hence by the dimension theorem of linear algebra

(53) dim(ker C}) =3

Geometrically it is obvious that S% maps a line p to a line S4(p) unless the line
p happens to pass through A (in which case it is mapped to a point). Hence from
(44) and (45) we see that the star of lines on A must correspond exactly to the
kernel of the matrix CY. This is in agreement with (53) since by (49) a star of lines
has linear dimension 3.
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To verify this algebraically, take an arbitrary point B # A and let p be the line

AB. From (26) we get its ray coordinates

(54) { p=bas—ba , pp=bas—bsar , ps=bsas—bsas
Ds = azb; — azb,; y D5 = azb; — a, b3 y Pe= a b — axb,

and one verifies that 1 L(p,) = 0 as we anticipated.

While we are multiplying matrices, we might as well note that

(CA)2 = a‘l

reflecting the fact that S is idempotent.

There is an illuminating way to describe the kernel of C}‘:
By(54) its general member is

b1a4 - b4a1 a4 0 0 -—ai
b2a4 - b4a2 0 a4 0 —az
b3a4 - b4a3 — 0 0 ag —dads
a2b3 - a3b2 - bl 0 +b2 —as +b3 asg +b4 0
a3b1 - a1b3 as 0 —a 0
albz - a2b1 —Q2 ay 0 0
14 24 34 4y

The sixvectors 14,24,34,44 are singular.
Hence by (45) they are the ray coordinates
of 4 different lines (if they are non-zero) and
by (26) these are the lines that connect the
point A to the 4 vertices of the C.T.

Since a; # 0 the sixvectors 24,34,44 are
always non-zero and linearly independent.
Hence they form a basis for ker C}. (Note
that 14 is zero in case A = the point 1).

By (51) the image of Cl, is spanned by the
sixvectors

Ps

COO0OOHO
OCOoOO=OO
CO=OOO

Comparing with Figure 8 we see that these 1
are the edges p,, p;, p, of the C.T. (which
lie in the plane w).

Hence the image of C is the plane system of lines in w as it should be.
g A y
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Appendix 1: Tetralinear pole/polar in P’

A point and a plane with a certain relationship to a tetrahedron in IP? are said
to be in a tetralinear pole/polar position relative to it. The point is called the
tetralinear pole of the plane and the plane is called the tetralinear polar of the
point with respect to the selected tetrahedron.

For the sake of clarity we will begin by describing the analogous relationship
(trilinear pole/polar) between a point and a line in IP? with respect to a selected
triangle (Figure 9).

Given a triangle ABC in IP? and a point Q not on any of its sides. We will construct
a line q called the trilinear polar of Q with respect to the triangle ABC:

A X
Join Q to A, B and C. e
L 4

QA cuts BC in D,
QB cuts CAin F,
QC cuts AB in G.

Consider the intersec-

tions of corresponding
sides of triangles ABC
and DFG:

DF cuts AB in X,
FGcuts BCinY,
GD cuts AC in Z.

It is easy to verify that
X, Y and Z lie on one
line.

This is the desired line q. Figure 9

By starting with q and dualizing the above construction relative to the same
triangle (now given by its sides abc) we end up with 3 lines on a point. One
verifies easily that this is the original point @, therefore called the trilinear pole of
q with respect to the triangle abc.
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It is instructive to consider the trilinear pole/polar relation with respect to the
ordinary cartesian coordinate triangle (P.C.S): z; = 0 (the y-axis), 22 = 0 (the
z-axis) and z3 = 0 (the line at infinity) (Figure 10).

z

q
=175
y=73

i +z2423=0

Figure 10

Given the unitpoint @ = (1,1)care. = (1 : 1: 1)pr;. the above construction gives the
trilinear polar line q with cartesian equation z + y + 1 = 0 or projective equation
z1 + 23 + z3 = 0. Hence q has projective coordinates (1 : 1 : 1). Note that the
points A, C, F and Z lie at infinity.

The analogue of the trilinear pole/polar construction in P? can be carried out in
any P",n > 2 in a natural way relative to a selected (n + 1)-simplex. In P? this
results in the tetralinear pole/polar relationship of a point and a plane with respect
to a tetrahedron that was mentioned in Figure 7.

If n is unspecified, we can refer to the corresponding relation between a point and
a hyperplane in P" as T-linear polarity.
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Appendix 2: The Grassmanian coordinates in [P"

In analogy with (4), P™ can be modelled as the set of all affine subspaces on a
fixed point O in E™!. The projective dimension of such a subspace is defined to
be its affine dimension as a subspace of E**'. Hence we have

element of IP" : point line plane --- P
subspace of E3t! : line plane 3-space --- (n+ 1)-space
projective dimension : 1 2 3 “ee (n+1)

The set of all subspaces with projective dimension d is called the d-Grassmannian

of IP", i.e.

{points in P"} = the 1-Grassmanian of P"
{lines in P"} = the 2-Grassmanian of P"

{planes in P"} = the 3-Grassmanian of P"

The d-Grassmannian of P" can be coordinatized by the homogenous, non-zero
("jl)-tuples of d-minors of the d x (n + 1) matrix:

g ool o apt
1 2 n+1
x x .o x
2 2 2
(55) .
S R

where the rows are the coordinates of d generic points of one of its elements — a
choice which guarantees that the rank of the matrix (55) is d — hence producing
a non-zero Grassmannian coordinate (":1)-tuple for each element.

It is important to observe that, in general, these coordinates are not independent
but connected by certain equations. In the case of the 2-Grassmannian of P?, this
connection is given by the Plicker equation (27), which is satisfied identically by
all line coordinates.

The number of d-minors of (55), and the number of real dimensions (degrees of
freedom) of the corresponding d-Grassmannians are shown in Figure 11.

1 0
1 1 0 0
1 2 1 P! 0o A1 0
1 3 3 1 P? 0 2 2 0
1 4 6 4 1 ) 0 3 4 3 0
1 5 10 10 5 1 P 0 4 6 6 4 0
1 6 15 20 15 6 1 P° 0 5 8 9 8 5 0
point ¥ / \ hyperplane
ray axas

Figure 11
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Since (":‘) = ((n:‘i’)l_ d), the d-Grassmannian and the ((n + 1) — d)-Grassmannian

of P™ have the same dimension. In fact, the principle of duality in IP" makes them
correspond bijectively as sets of dual elements.



Ambjorn Naeve

33

List of References:

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Blaschke:

Blaschke:

Blaschke:

Coxeter:

Grassmann:

Hilbert &

Cohn-Vossen:

Hlavaty:

Jessop:

Klein:

Klein:

Lane:

Mobius:

Plucker

Analytische Geometrie
Verlag Birkhauser, Basel/Stuttgart 1954

Projective Geometrie
Wolfenbiittel 1948

Vorlesungen fiber Differentialgeometrie, vol I, II, III
Verlag von Julius Springer, Berlin 1923

The Real Projective Plane
Cambridge University Press 1955

Linealen Ausdehnungslehre
Leipzig 1844
(Revised and enlarged:
Ausdehnungslehre, Berlin 1862)

Geometry and the Imagination
Chelsea Publishing Company, New York 1952

Differentielle Liniengeometrie
P. Noordhoff N.V., Groningen, Batavia 1945

The Line Complex
Chelsea Publishing Company, New York 1969
(first published at Cambridge, England in 1903)

Vorlesungen iber hohere Geometrie
Chelsea Publishing Company, New York 1949
(first published by Julius Springer, Berlin in 1926)

Vorlesungen uber nichteuklidische Geometrie

Chelsea Publishing Company, New York
(first published at Gottingen, Germany in 1927)

Projective Differential Geometry
The University of Chicago Press, Chicago, Illinois 1942

Der baryzentrische Calcul
Leipzig 1827

Neue Geometrie des Raumes
Leipzig 1868 (bei B.G. Teubner)



Ambjorn Naeve

[14] Poncelet:

[15] Sauer:

[16] Veblen & Young:

[17] Salmon:

[18] von Staudt:

[19] von Staudt:

[20] Winger:

[21] Wilczynski:

[22] Clebsch
& Lindeman:

[23] Bieberbach:

[24] Hodge & Pedoe:

[25] Hilbert:

[26] Hjelmslev:

34

Traité des propriétés projectives des figures
First edition: Paris 1822
Second edition: Paris 1865

Projektive Liniengeometrie
Walter de Gruyter & Co, Berlin/Leipzig 1937

Projective Geometry, vol I, II
Boston 1910, 1918

Analytic Geometry of Three Dimensions, vol 11
Chelsea Publishing Company, New York, N.Y. 1965
(reprint of the fifth edition, published at

Trinity College, Dublin in 1914)

Die Geometrie der Lage
Erlangen 1847

Beitrage zur Geometrie der Lage
Nirnberg 1856-60

Introduction to Projective Geometry
Dover Publications, Inc., New York, 1962
(first published by D.C. Heath & Co. in 1923)

Projective Differential Geometry
Chelsea Publishing Company, New York
(first published by Carnegie Institution of
Washington in 1905)

Projective Differential Geometry
Vorlesungen iiber Geometrie
Leipzig 1876

Projektive Geometrie
Leipzig, Berlin, 1930

Methods of Algebraic Geometry
Cambridge 1947

Grundlagen der Geometrie
7. Aufl. Leipzig 1930

Grundlag for den projektive Geometrie
Kgbenhavn 1933



Ambjorn Naeve

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

Darboux:

Reye:

Zindler:

Buseman
& Kelly:
Maxwell:

Maxwell:

Filon:

Juel:

Enriques:

Gruenberg

& Weir:

Baer:

Principes de Géométrie Analytique
Paris 1917

Die Geometrie der Lage
6. Aufl. Leipzig 1923

Liniengeometrie mit Anvendungen
vol I Leipzig 1902
vol II Leipzig

Projective Geometry and Projective Metrics
Academic Press Inc., New York 1953

The methods of Plane Projective Geometry
Cambridge University Press 1946

General Homogenous Coordinates
in space of three dimensions
Cambridge University Press 1951

An introduction to Projective Geometry
Edward Arnold & Co, London 1908

Vorlesungen {iber Pro jektive Geometrie
Julius Springer, Berlin 1934

Vorlesungen iiber Projektive Geometrie
2. Aufl. Leipzig, Berlin 1915

Linear Geometry (2:nd edition)
Springer Verlag 1977

Linear Algebra and Projective Geometry
Academic Press Inc., New York 1952

35



