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Abstract

Geometric properties are of key importance in the re-
covery of scene structure from images. It is argued
that the proper formulations of the determination of
scene geometry are obtained when projective geometry
is used. A framework of projective geometry for com-
puter vision is presented in brief and its advantages and
applicability are demonstrated. Examples of how the
framework can be used are given. It is also described
how the needed features can be found with required
accuracy. :

Topic area: Computer vision.

Key words: Recovery of 3-D structure, contour fea-
tures, projective geometry.

Introduction

The goal of computational vision is to derive descrip-
tions of a scene from images of it. In particular, the de-
scriptions could be in terms of primitives representing
the geometric structure of the world. There are several
reasons why such descriptions are important.

In a world of coherent objects and at the level of
surfaces and volumes and their bounding contours im-
portant aspects of the structure are embodied in the
geometry. Furthermore, it is well-known that the geo-
metric cues, like the occluding boundaries of surfaces,
impose very strong restrictions on the possible struc-
ture of the scene. This has been shown to be true both
for single images of static scenes, [1], [2], for stereo
images of static scenes [3], [4], and for time-varying
imagery, (5] and others. In fact, geometric features tend
to be much more useful than the photometric features
in the computation of what is in the scene (see e.g. [1]).
There is also an abundance of proposed methods for
exploiting geometry in the recovery of scene structure,
see [2] for an overview.
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The basic paradigm in such approaches is to detect
certain primitives in the images and determine their
interrelationships which constrain the scene. Often the
latter part requires some form of search or agglomer-
ation procedure since the inverse problem at hand is
underdetermined. Structure can therefore only be in-
ferred from evidence obtained at different locations in
the image. A classical example of this method is given
by the so called Hough transform [6]. The primitives
are then points, e.g. the edge points and the relation
one tries to establish is that of collinearity. The prob-
lem is translated into dual space, where collinear points
(points on a line) become concurrent lines (lines on a
point). Discretization implies that the search can be
performed by a simple counting procedure.

The Hough transform example works in the image
and makes no reference to the image formation process.
In most cases such references have to be made. The
problem of determining the orientation of three planes
intersecting at right angles in a corner has been treated
by several authors e.g. by Mackworth (7], Barrow [8]
and Barnard [9]. Mackworth uses the surfaces normals
and utilizes certain constraining relations in gradient
space in his search. Barnard uses lines as primitives
and searches for orthogonality by maximizing volumes.
Barrow on the other hand employs a strictly geometric
construction in the image plane. The corner problem is
important when scenes containing man-made objects
are considered. Moreover, it is well-known that humans
tend to ascribe right angle interpretations to corners
when this is possible. Another, more general example
is the detection of parallel lines in the scene. They
map into vanishing points in the image. Hence, the
primitives are the lines and the relation searched for
is concurrency. An assumption has to be made: many
(more than two) lines will generally not be concurrent
in the image by accident. Barnard [10] suggests that the
search for concurrency is carried out by mapping the
image plane to the Gaussian sphere. In that way the
search can be carried out in a compact space. In fact,
a similar argument was put forward by Duda and Hart
[6] when they explored the Hough transform. They did




not compactify the space, but they chose the polar
equation for the lines and hence bounded one of the
two variables.

Other problems in a similar vein concern the deter-
mination of symmetries (see e.g. [11]) and occluding
contours, (12],[13], both being of paramount impor-
tance in recognition tasks. If we in particular consider a
world containing man-made objects all these problems
deal with issues treated in classical projective geome-
try. Bits and pieces of the wealth of results in geome-
try have also been used in computer vision. However,
we contend that the approaches taken have often been
somewhat arbitrary. The basic methodological princi-
ple of geometry as demonstrated by Klein e.g. in [14]
states that problems should be solved by changing the
background. In a terminology more familiar to practi-
tioners in Al this implies that the key issue is represen-
tation. But representation is not only a question about
choosing the primitives. It is also a matter of posing
the problem in its right context, that is defining the
solution space correctly. If we consider the problems
on recovery of scene structure given above, we observe
that they all deal with projective notions. The proper
context in which to pose the problems is therefore in
terms of projective geometry. We shall show that this
indeed can be done and that several advantages accrue
from that. We shall state three of the most important
aspects here. First, the equations obtained are simple.
Often they are linear or of the second order. This is very
much at the heart of projective geometry. When the
problems are solved in affine or Euclidean space unnec-
essary analytic complexity is introduced. Complicated
trigonometric expressions are obtained when the prob-
lems are formulated in such metric settings. Secondly,
the dimensionality of the solutions to these equations
is often directly given by the problem formulation. It
implies that the degrees of freedom of the solution are
explicitly given. We know how much we don't know
without making any ad hoc assumptions. This is highly
desirable in computer vision tasks. Thirdly, the need
to compactify the space to limit the search disappears.
The projective spaces are compact!

At this point one could ask the question whether
there are only mathematical arguments for such an ap-
proach, or if there exist motivations also from the point
of view of biological vision. We have already observed
that geometric cues are important for our understand-
ing of the visual world. It can certainly be argued that
our visual system is more qualitative (comparative)
than quantitative (see e.g. Brooks [15]). Precise metric
estimates are definitely not appropriate to describe the
process. The use of relations, like coincidence, relative
sizes etc., is more to the point. So, without claims as to
how biological vision works, we can say that descrip-
tions in projective terms are more appropriate than
those in metric terms.

In this paper we shall introduce some of the basic
notions of projective geometry needed to solve vision

problems like those stated above. We shall then demon-
strate how they can be used by giving solution to a few
simple problems. Finally we shall outline a computa-
tional approach to finding the necessary primitives in
image data.

Some basic notions of projective line
geometry.

In [16] Naeve develops a complete theory of projec-
tive line geometry for computational vision. The gist
of this theory is the way in which the imaging process
is represented. Of particular importance is the coordi-
natization, e.g. because appropriate relations become
evident and symmetries are explicit. In this paper we
shall make use of this theory and the notations needed
to demonstrate that problems on parallelism and or-
thogonality can be expressed in a straightforward way,
amenable to simple solutions. Their solutions, also de-
rived in [16], will be presented as well. It is beyond
the scope of this paper to account for the theory, as a
whole. The purpose here is to point to the fact that the
proper mathematics exists and to show how it can be
applied to real imagery.

We first introduce the coordinate systems (for more
details see [16]). The projective point and plane coordi-
nates can be defined using double ratios relative to the
coordinate tetrahedron (C.T.), or, as in [16], by rep-
resenting the points of projective 3-space by the lines
through a fixed point in affine 4-space. If one selects a
unit point and a unit plane according to Figure 1 one
gets

point: (zy:z3:z3:2,) (1)
. plane: (w':w?:w®:w) (2)

and the equation of joint position, in tensor notation
zw' =0 3)

As a special case the affine coordinates are abtained
when the plane at infinity is
Ie:24=0 4)
The affine coordinates are
{ point: z;/z4

plane: w'/wt =23 ©)

The orthogonal Cartesian coordinates are obtained
if the edges of the C.T., which are not in II,, are
mutually crthogonal. Then z; and w*, k =1, ..., 4, are
called homogeneous affine coordinates and homogenous
Cartesian coordinates, respectively.

Given the point coordinates (1) one can now intro-
duce line (ray) coordinates. A line p is determined by




two different pointé z and z’ with projective point co-
ordinates (z;){ and (z!){. From the matrix

(2 232) ©
one defines the six homogeneous projective ray coordi-
nates (§ # 0, arbitrary)

Spr =212 — 2431 8py =237 — 2,37
8pr =224~ 24z py =237} — 2,7} )
6ps =24z — 223 bpe =2124 — 7,7}

See also Figure 2.

We also denote them by (p,)$ and observe that they
can not all be equal to zero. The following two facts
are crucial (see e.g. [16] for proofs):

Proposition 1. (p,)¢ denotes a line iff

PP+ Paps+paps=0  (8)

Proposition 2. Two lines given by (p,)$ and (g,)¢ in-
tersect iff
P194 + P2gs + page + Pags + Psqz + pegs = 0 9

The point of intersection between a line and the
plane w = (w') can be found from the following:

Proposition 3. The line p = (p,) and the plane w =
(w') determine the point z = (2;) with

coordinates
21 0 -ps ps m w!
22 | _| ps =P« D2 w? (10)
23 ~ps p¢ O p3 w3
24 “p —-p -ps O wt

unless the product is zero, in which
case the line p is contained in the plane
w.

The proof of this statement and its dual (the relation
between a line and a point) can be found e.g. in [16).

In order to treat the example of a right angle corner
we also need a way of expressing orthogonality in pro-
jective terms. To do so we have to consider the space
as complex — that is, allow complex coordinates. It is
easy to see that the intersection of an arbitrary sphere
and Il (z4 = 0) satisfies the equations

(11)

This is a complex circle in I, called the sphere cir-
cle, S. Now if two intersecting lines are orthogonal their
points of intersection with I, are complex harmonic

{x¥+x§+x§=o

3:4-':0
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conjugates with respect to S. In other words, one point
lies on the polar line to the other with respect to S. If
the coordinates of the two points are (¢ : & : & : 0)
and (m : 72 : 73 : 0) this means that

Gm+ém+E&ans=0 (12)
The arguments behind this equation can be found in
most standard textbooks on projective geometry.
We are now ready to give some examples of how
these notions can be used.

3. Determining parallel lines using line
geometry

Parallel lines in a (3-D) scene are projectively lines that
intersect at the plane of infinity. Hence, finding paral-
lel lines only concerns lines and intersections of lines.
Various methods have already been proposed to deter-
mine parallelism, sec e.g. Kanade, [2], and Barnard [10).
However, neither of these approaches have exploated
the simple structure the problem gets when posed in
projective terms.

If we use line geometric notions a straightforward
formulation of what we know is sufficient. We then get
expressions that are simple to solve explicitly and that
also show what the degree of underdeterminedness is.

In fact, let us assume that we have the parallel lines
(a:),(b:)§ and (c;)¢ given in the coordinate system of
Figure 3. They will then intersect at a point (0: 2, : 2, :
z3) in the plane (1:0: 0 : 0). The point of intersection
is given by (10). Since all the lines give the same point
we find

as Cs 25 Cs
(3)=+(%)  (5)=<(5) oo

Moreover, we know that (a;)$, (8;)¢ and (¢;)¢ define
lines, that is by (8)
a184 + azas + azag = 0
b1b4 + b2b5 + b3b8 =0

C1Cq4 ¥+ C2¢5 + C3Cg = 0

(14)

In these equations a5, a3, a, etc. are observable in the
image plane. To see what the solution of (11) and (12)

are we can define the vectors q,3d,b,d,¢,¢ in analogy

with
. as -a
a=| a¢ , a=| a3
a; , a4

Using formal definitions on inner and outer products
on these vectors we can write (13) and (14)

(15)




a-a=0
5=0
{ ¢-€=0 (16)
a=ac
{ b= fBec
that is
c-a=0
c-6=0 17)
c-c=0
a system which is obviously solved by
c=7(@xb)

We note that @,b and ¢ are linearly dependent, since
they form a pencil in the plane (1:0: 0 : 0). Moreover,
a, B and v are indeterminate. In fact, the projection
operator onto z; = 0 in the chosen coordinate system
has matrix (see [16])

0 0 0 0 0O
010 0 00O
P 0 01 000
G=1000100 (19)
000 0 0 0O
0 0 00 0O
Hence
a 0 a; 0
as az 0 az
Al a3 | _ A a; 0 —_{ a3
o}y a | = C, aq +A 0 =1 a
as 0 as 0
aeg 0 ae 0
(20)
that is
°
0 Al
0 ekerC} (21)
as
a¢

4. Application of line geometry to the
corner problem

Assume that the planes in 3-space intersect at right
angles and that the scene is projected onto an image
plane, II, by a sensor (camera or eye) at position P.
The introduction of projective coordinates described

(18)
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above suggests a coordinate system which is illustrated
in Figure 1 and Figure 2. Let the three lines be (see
Figure 4)
' p°O(a:);
PO
PO
If the image plane is z; = 0 then the projections of
the lines into the image plane have components 1, 5 and
6 equal to 0. If we (like most other authors who have
treated the problem) make the simplifying assumption
that the eye is at infinity and set P = (1:0:0: 0)
then the projected lines are

(22)

(O:az:a;,:'a.:O:O)
'(O:bz:b3:b4:'0:0)
(0:cz:¢3:¢4:0:0)

(23)

We now simply state what we know about the config-
uration: .

(a:)3, (5, (c:)] represent lines ()
' (i)
(i3)
Propositions 1 and 2 give equations corresponding to
(i) and (ii). To use (iii) we note that (11) implies that
the points of intersection with II,, are (a; : a; : a3 :

0),(by : b; : b3:0),(c1 : 3 : €3 : 0). We then use (12)
and get

%05 p° intersect

p°,pband p° form right angles

[ a4a; + 6,05 + azag =0

byby + babs + b3be =0

€41 + C205 + c3c6 =0
bsa; + azbs + asbe + asb; + byas + bsag =0

{ €48y + azcs + ascg + ayc; + czas +caag =0  (24)

v becy + c2bs + c3bg + caby + bacs + bacg = 0

a by + azb; +azb3 =0
a;¢ + azc; +axc3 =0

bicy + by + bacz3 =0

\

The first six equations are linear in the unknowns
a,, as, ag, by, bs, b, ¢1, ¢s, c6. If the corner is in a gen-
eral position, this linear system has rank five. The
last three equations are quadratic. Choosing one of the
unknowns as a parameter and solving the combined
linear-quadratic system one obtains exactly two solu-
tions for each parameter value. This explicitly tells us
that




o the distance to the corner is undetermined

o for each value of the distance there are exactly two
solutions, corresponding to depth reversals.

We summarize the two examples by noting that

¢ the solution was found by using exactly the informa-
tion that is given, (i)—(iii); -

o the degrees of freedom in the solution come out
explicitly.

These were the goals we wanted to achieve and we have

shown that we attained them in these, albeit simple,

examples.

5. Using projective line geometry —a
computational approach

We have introduced some basic notions of projective
line geometry which can be used for deriving scene
structure from image structure: The framework is pre-
sented in more detail by Naeve in [16]. In order to apply
this framework to real image data it is of paramount
importance to find the primitives (like lines and conics)
with high precision at their exact positions and with
correctly determined directions. Due to various types
of noise and irrelevant details in the image data this is
difficult. There is a need to smooth the data without de-
stroying the positional accuracy. Recent work on edge
detection (see, e.g. [17] and [18]) and on scale-space
description of image structure (see, e.g., [19] - [21])
have considered these conflicting goals. We propose an
- approach to finding the geometric primitives which em-
bodies these principles. In principle the approach works
as follows (see also [22]):

o First, significant edges are detected by a method
that focuses in on the edges found by an operator
that blurs the image considerably. Scale is treated
continously, and the step size in scale is determined
analytically based on a model of possible shifts in
edge position as scale varies. A detailed account can
be found in Bergholm [23].

o Secondly, contours are traced in a non-committing
manner. This means that simple rules of good con-
tinuation and multiple thresholds are used. However,
the contour follower is not forced to find seman-
tically meaningful boundaries, e.g., by filling gaps.
The necessary information is not always available at
this processing level.

e Finally, the traced contours are piecewise approxi-
mated with first and second order polynomials. This
is also done in scale-space, scale now corresponding
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to the error tolerance. In this manner the contours
are smoothed but position, direction and incidence
structure is preserved for the important features. For
details see Bengtsson et. al., [24].

Early results show that this approach works well and
that it can give primitives to be used in the mathemat-
ical framework we have presented. Ongoing work aims
at showing this for real imagery.

6. Conclusion

We have presented a framework for using projective
geometry in the recovery of 3-D scene structure. We
have also presented solutions to a few simple but im-
portant examples. These examples can all be treated
in Euclidean terms. However, the projective approach
implies that we get simple and explicit formulations
of what is known and what is not known. The re-
quired search for structure can be replaced by explicit
solutions to systems of equations, since P is com-
pact.Hence the presented framework can be considered
as appropriate for finding the scene structure one is
looking for.
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