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1. INTRODUCTION

The desire to study geometrical relationships between objects arises in many fields of
human activity, ranging from architecture to particle physics. In this age of abundant
computational power the possibilities of modelling complex geometrical phenomena and
simulating their behaviour under "realistic" circumstances are better than ever before. At
the same time, however, the knowledge of geometry has declined dramatically over the
last 50 years, especially among engineers.

When the "supernova of abstraction" exploded in the beginning of this century,
mathematics rapidly took off into the new and exiting dimensions of functional analysis,
point set topology and algebraic geometry - to name a few - leaving behind the complex
but conceptually familiar research questions of "concrete” geometry. And today, the subtle
and ingeneous coordinatization techniques of the old masters - such as Klein, Kummer,
Lie, Salmon, Cayley, Clifford and many others - are buried deep in the cellars of the
university libraries. Instead of making good use of the representational power of these
classical ideas, a world of engineers are busy programming their computers in the same
familiar "euclidean and cartesian style", which is the only way they have ever been taught
to represent the geometrical world. Euclidean geometry has many excellent qualities, but
unfortunately it also has some serious shortcomings that introduce unnecessary analytical
and combinatorial complexity in many situations. This complexity can sometimes be
overcome by the use of "raw" computational power but it often wreaks havoc with the
computational process - leading to unsurmountable problems and computational "dead-
ends". The benefits of a unified representation of a geometrical situation - in which the
euclidean viewpoint can be embedded as a special case - would therefore be substantial. It
is a pleasant mathematical fact that classical geometry provides such a representation - in
terms of so called "projective geometry". The present paper is devoted to presenting this
projective representation and illustrating how it can be applied to the field of geometric
modelling in general. Starting from a (brief) discussion of some of the basic notions of
projective geometry (to be read together with {4]), we will describe an interactive
environment (called Drawboard) for studying the dynamic properties of geometric
constructions in general. The usefulness of this tool will be demonstrated by showing it
"at work" on a few explicit constructional examples. Also a few "deductive” examples of
our projective representational technique will be presented - in the form of outlines for
algorithms to compute geometric entities like the inflection tangent of a curve or the 3D-
orientation of a plane. Finally we will discuss the general geometric philosophy that
penetrates these ideas as well as the plans for future development.



2. GEOMETRIES AND THEIR GROUPS OF
TRANSFORMATIONS

In his famous Erlanger program of 1872, Felix Klein proposed to define a geometry as a
collection of statements concerning the relationship between "objects" that remain
invariant under a group of transformations. This marks the beginning of the "modemn"
viewpoint - where each geometry is regarded as a sort of "language", with its own
collection of transformations ("verbs") and invariants ("nouns"). "Square" is a noun in
euclidean geometry because every instance of this type "survives" the effect of all
cuclidean verbs i.e. it remains a square when subjected to an arbitrary euclidean
transformation (a ridgid motion, a reflection or a similarity transformation). However,
"square” is not a noun in affine geometry, because an affine transformation can destroy it
and deform it into a parallelogram - which is the affinely invariant aspect of a square. A
parallelogram in turn can be destroyed by a general projective transformation - since the
latter does not have to preserve the parallelity of two lines - and the only aspect that
survives is the quadrangle (or quadrilateral), which is the appropriate projective name for
a euclidean "square"” or an affine "parallelogram" .

This discussion illustrates the fact that the group of euclidean transformations is a
subgroup of the group of affine transformations which is in turn a subgroup of the group
of projective transformations. It turns out (see e.g. [1]) that the latter group is the largest
of all possible geometric transformationgroups, which is reflected in the fact that it can be
represented algebraically as the full matrix group of the corresponding dimension. Every
other geometry is characterized by a subgroup of the projective group. This is the content
of the famous statement by the great geometer Arthur Cayley: "Projective geometry is all
geometry!” :

When looked upon from the projective standpoint each metric (distance measure) is
derived from a quadratic form Q in the surrounding projective space. The corresponding
geometry (Q2-geometry) is the geometry whose group of transformatons (isometries)
preserve the distance measure induced by Q, and the isometries of Q-geometry constitute
the subgroup of the full projective group that takes each point of Q into another point of
€, hence leaving Q invariant as a whole.

When 2 is a non-degenerate quadratic form, the corresponding Q-geometry is called
"hyperbolic" or "elliptic" depending on whether Q contains real points or not. Both of
these types of geometry are traditionally called "non-euclidean". The "ordinary" euclidean
geometry is the result of letting Q degenerate in a special way.

In two dimensions the degeneration consists of gradually "compressing” a complex, non-
degenerate conic £2 and moving it "towards infinity" until it finally "collapses" into two
conjugate complex points on a double (real) line at infinity (figure 1). These points are
called "“the circular points" (or I and J) and it is easy to show that all circles in the plane
must pass through them. They are the "rulers" of the metric properties of the euclidean
plane, and Cayley was so impressed by their many remarkable properties that he named
them "the absolute"!
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In three dimensions the euclidean form Q consists of the plane at infinity together with a
complex circle on it (figure 2). This circle is called "the sphere circle", since all spheres
must contain it. Each euclidean plane = cuts the plane at infinity in a line and this line cuts
the sphere circle in two (conjugate complex) points. Hence the intersection of &t with the
3D euclidean metric form Q produces a line at infinity and two conjugate complex points
on it (I, and J;). This configuration is the 2D euclidean metric form of 7 and it governs
the "internal” euclidean metric of %t as embedded in the surrounding 3D-space.
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< figure2 >

Hence we can describe the 2D-metric geometry of & as projectively related to the points I,
and J (an example of how this can be done is given in chapter 5) and then relate this
"intrinsic” geometry of % to the geometry of the "extrinsic" surrounding 3D-space.

For an excellent treatment of these ideas the reader may consult [2], which is a classical
"masterpiece” by Felix Klein.



3. THE BENEFITS OF A PROJECTIVE REPRESENTATION

The kind of "intrinsic-extrinsic linkage" described in the last paragraph is highly desirable
in many modelling situations where geometrical analysis and deduction (i.e. "geometric
reasoning") from a variety of 2D and 3D "input information" is to be performed. As an
example, in the field of computer vision the informational contents in a given geometric
scene is often a mixture of two different kinds - projective (e.g. incidence relationships as
observed by the viewer - or given in some other way) and metric (e.g. knowledge of the
size, shape, or relative position of different objects). The informational content within
cach of these types may itself consist of a mixture of 2D and 3D data. For the viewer to be
able to utilize all this information optimally in his attempt to interpret the scene, it is
important to have available a spatial representation that allows him to "integrate all the
pieces of geometric information into the same puzzle" without making any ad hoc
assumptions. The projective representation provides this "common grounds" - making it
possible for the totality of given scene-data to restrict the possible image interpretations in
a consistent and unified way - hence giving the viewer the power to keep track of "what
he doesn’t know" as well as "what he knows". More details on how projective
representation techniques can be utilized in computer vision and robotics can be found
e.g.in [ 8].

4. SOME BASIC NOTIONS OF PROJECTIVE GEOMETRY

4.1. PROJECTIVE GEOMETRY IN THE PLANE

The construction of the projective plane P2 from the ordinary affine plane and the
introduction of projective coordinates are described in detail in [4]. We will adopt the
same notation here and referring the reader to [4] p.1-12 we will write:

Symbol Meaning

CTU the Coordinate Triangle Unitpoint
configuration (or base) for the points
of P2

ctu the dually unified base for the lines
of P2

[xlcru the projective coordinates of the point x

in the corresponding base



(x4:x5:x5) the projective coordinates of the point x

written explicitely
(v the projective coordinates of the line v
in the comresponding base
(v4:v,iv,) the projective coordinates of the line v
written explicitely

4.2. PROJECTIVE GEOMETRY ON THE LINE

In a completely analogous way we can construct the projective line P! and introduce
projective coordinates for the points on it. Referring again to [4] (p.5) for details we can
continue our summary of notation:

Symbol Meaning

Clu : the Coordinate Interval Unitpoint
configuration (or base) for the points of P!

[x]lciu the projective coordinates of the point x
in the corresponding base

(x,:x,) the projective coordinates of the point x
written explicitely

4.3. PROJECTIVE GEOMETRY ON THE POINT

The projective point is dual to the projective line. Hence it is isomorphic to P! and is
described by the same algebra (see [4] p.8). The lines on a point are thus coordinatized in
the same way as the points on a line. For the sake of completeness we list the |
corresponding notation:



Symbol Meaning

ciu the coordinate interval unitline
configuration (or base) for the lines of P1

[vli the projective coordinates of the line v
in the corresponding base
(vyiv,) the projective coordinates of the line v
written explicitely
4.4. CROSS-RATIO

There is another way to look at the coordinates of P! based on the so called cross-ratio of
four points on a line (or four lines on a point). The cross-ratio can be introduced
"projectively"” - without any reference to metrical ideas (see [2]) - but it is convenient to
make use of an "auxiliary metric" in its definition and then prove that it is a well defined
projective entity i.e. invariant under a sequence of perspective projections onto other lines
or points. This approach also has the advantage of conveying an intuitive feeling for the
size of the cross-ratio as a function of the relative position of the four points (lines).

Consider the four points A, B, C, D on the line v (figure 3). The cross-ratio of the pair
A, B relative to the pair C, D is denoted by (AB|CD) and it can be defined as

(1) (AB|CD) = (CA/CB)/(DA/DB)

where CA is the euclidean (signed) distance between the points C and A using an
underlying orientation chosen on the line v.
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< figure 3 >

The cross-ratio (AB|CD) can be thought of as the ratio between how C divides AB and
how D divides AB. It is a simple trigonometric exercise to show that this quantity is
invariant under perspective projection i.e. that

(2) (A'B'|C'D') = (AB|CD)



< figure 4 >

This means that the dual situation (two pairs of lines a,b and ¢,d on a point V) can be
assigned a well defined cross-ratio, namely by cutting the four given lines by any line e
not on V (figure 5). The cross-ratio (ab|cd) is then simply defined to be the value of the
cross-ratio of the four corresponding "cutting points" (AB|CD). By (2) this value is
independent of the choice of e and hence it is a property of the two linepairs a,b and ¢,d.

v
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< figure § >
It is easy to see that the position of a variable point X on a given line v is uniquely
determined by the cross-ratio (i) of X and three fixed points A, B, C arbitrarily chosen
onv. If we let
(3) p = (AB|CX) = (CA/CB)/(XA/XB)

we can observe that

(4)

<=> U = oo
<=> pu=0
<=> p=1
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Hence it is natural to call A, B and C the e=-point, the 0-point and the 1-point
respectively. Furthermore, if we write u as a ratio:

(5) k= uyluy =gty
we see that A, B and C correspond to the (1:0)-point, the (0:1)-point and the (1:1)-

point. One can easily verify that (u,:1,) are the C.LU.-coordinates of the point X
corresponding to the choice of A and B as coordinate-interval points and C as unit point.



S. DESCRIBING METRIC INFORMATION PROJECTIVELY

Having defined the cross-ratio we can now fulfill our promise from chapter 2 to explain
how metric properties can be described in a projective way. As we mentioned in that
chapter, the embedding of metric geometry against the "universal" projective background
is done by expressing the metric information - such as distance and angle - as projective
relations with respect to the "metric form" (i.e. the quadratic form Q that induces the
metric as described above). We stress again that this makes it possible to utilize metric
information in a projective setting, since the corresponding relations are projectively
invariant.

So let us consider the concept of "distance" - which is the fundamental quantity upon
which metric geometry is resting. The Q-distance between two points A and B (i.e. their
distance measure in Q-geometry) is defined to be (a scaling constant times) the logarithm
of the cross-ratio of A and B with respect to the two points O, and O, that are common
to the line AB and the conic Q:

(6) distance(A,B) = k-log(AB|0,0,)

O, ©,

Since points and lines are dual objects in the projective plane, the "distance" (i.e. the
angle) between two lines can be obtained by dualisation:

The Q-distance between two lines a and b (i.e. their angle) is (a constant times) the
logarithm of the cross-ratio of a and b with respect to the two lines 0, and o, that are
common to the point ab and the conic Q:

< figure 6 >

(7) angle(a,b) = K-log(ablo,0,)

<figure7 >



It is instructive to calculate the euclidean angle between two lines using this formula.
Referring to figure 8 we get
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< figure 8 >

(i—tan@,)
RP/RQ= (i —tan@y) _
SP/SQ (-i-tane,)

(-i-tan6,)

(PQIRS) =

_ (icos®, — sinB)(-icosO, — sinby)
" (~ic0s0; — sind,)(icose, - sinby)

_ (cos6, +isinBy)(cos6, ~isindy)
" (c0s6, —isind,)(cos6, +isindy)
eioi e"ieé _ ei(o1"92)

= o2i(04-62)

and we see that if we choose the constant K = 1/(2i), the formula (7) is indeed expressing
the familiar euclidean angle. This calculation was discovered by Laguerre (1853) and it is
referred to as Laguerre s angle formula.



6. DRAWBOARD

6.1. GENERAL DESCRIPTION OF THE SYSTEM

Let us consider the problem of representing the world of geometrical constructions in a
way that allows positional modifications of the participating parts. Each construction has
its own "history" that can be regarded as a mixture of "random choice" (e.g. choose two
points P and Q) and "canonical induction” (draw the line PQ). When an object A takes
part in the construction of another object B, we can think of B as a child of A and A as a
parent of B. In the example above the line PQ is a child of the point P and the point Q,
and both of these points are parents of PQ. Each "birthprocess" thus contains an element
of "choice" and an element of "necessity". Sometimes one of these complementary
elements may be missing altogether. In our example the constructions of the points P and
Q contain only choice but no necessity, while the construction of the line PQ contains
only necessity and no choice. If we carry our example construction one step further and
choose e.g. a point R on the line PQ, we see that R contains both elements - the choice
being provided by "the random God" and the necessity by the parent PQ. In the same
way each child must have an element of "parental necessity" in its construction as opposed
to the "ancestors” (parentless objects like P and Q) that are characterized by "pure
choice".

By a positional modification (PM) in the construction of a geometric object we mean a
“reconstruction” of the object that is changing the element of choice (by making a different
choice) but maintaining the same element of necessity (i.e. the same parental
relationships). Hence a positional modification of the point R means choosing it in a
different position but still on the line PQ.

Also we do not allow positional modifications that destroy any parental relationships of
future generations. If we want to modify the position of the point Q, we are free to choose
* anew location for it anywhere - except at the point P - since this would effectively
annihilate the existence of the line PQ, hence destroying the parental relationships
between P, Q and PQ.

In order to implement these restrictions on the allowable positional modifications we can
regard each object as possessing a certain "type" - containing information about its own
kind of parental relationship. The points P and Q of our example are of type "free-point"
(since they have no parents), the line PQ is of type "line-on-2-points" and the point R is
of type "point-on-1-line". Hence we can state the following general rule concerning the
"allowable changes" in our system:

A positional modification of an object in a given construction is allowable
if and only if it maintains the type of every object that is part of the
construction.



Let us introduce the name APM for an Allowable Positional Modification of an object in a
geometric construction. When we carry out an APM at a certain stage of the construction,
its effect will in general influence the "future part” of the construction - leading to other
APMs of children, grandchildren etc. etc. Note that we cannot be certain that a PM is
really an APM until we have observed its effects on all the future generations of the
construction - convincing ourselves that all the generated PMs are in fact APMs. This
means that we must maintain some sort of "singularity check" that signals the original PM
if - at some later stage - it leads to a construction that is "close enough" to collapsing - by
being too ill conditioned to be allowable. Only if our PM passes this test can it be accepted
as an APM - and be allowed to propagate its effects through the entire construction. If the
test fails the entire construction must be "rolled back" and the system restored to its
previous state.

6.2. INDUCING INTRINSIC COORDINATES BY PROJECTION

The projective representation discussed earlier gives us the ability to administer the entire
hierarchy of APMs that is involved in updating a geometrical construction consistently.
This is done by equipping each object "at birth" with its own intrinsic coordinate system
(ics) that is used to keep track of the positions of all future children of this object. When a
child is subjected to an APM, it is the coordinates of the child in the ics of its parents that
are allowed to change - provided there is room for such a change (i.e. provided there was
an element of choice present in its creation). The ics of each created object is constructed
by projection from the projective coordinate system that is used to describe the entire
surrounding space. This global, unchanging coordinate system - that is chosen once and
for all - will be denoted by the term "superbase”.

6.3. THE TWO-DIMENSIONAL IMPLEMENTATION

In what follows we will restrict our discussion to two dimensions and describe an
implementation in P2 of our dynamic constructional hierachy called "Drawboard",
which is the only functioning system that has been designed so far. Drawboard presently
works with points lines and conics, but it is easily expandable to include other types of
objects as well.

The system is implemented in an object oriented style - using the Common Lisp flavors
package that supports multiple inheritance of instance-variables and methods for different
oobject types. This makes it possible to greatly increase the modularity and decrease the
length of the code - by doing things "at the right level of abstraction". As an example, the
types (flavors) "point” and "line" are abstract flavors in the system. We never create any
instances of these types since this would prevent us from an optimal exploitation of



duality. What we actually create in the system are instances of type "free-point”, "point-
on-one-line" and "point-on-two-lines" (and the analogous flavors for lines). The
(concrete) flavor "free-point” is a mixture of the abstract flavors "point” and "free-dual”,
the flavor "point-on-one-line" is a mixture of "point" and "dual-on-one-dual" and the
flavor "point-on-two-lines" is a mixture of "point" and "dual-on-two-duals". The three
different "dual-flavors" are in turn mixed from the abstract flavor "dual". The flavor
"dual-on-one-dual” - for instance - is a mixture of the flavors "dual" and "cross-ratio” -
the latter flavor representing the "internal coordinate” of the object with respect to the ics
of its "parent-dual”. This has the advantage of treating dual situations in the same setting -
using the identical algebra - which is one of the major benefits of projective geometry in
the first place. Hence we can defer until the last possible moment (i.e. the moment of
creation of a graphic representation) the decision in our system of which of the objects that
are points and which that are lines - something that makes the dualization of a given
construction virtually automatic.

The hierarcical parents-children relationships are handled by a basic (abstract) flavor
"relative” which is an ingredient flavor of every object in the system. This flavor is
responsible for checking the consistency of a PM in the construction, and allowing its
effects to propagate if these are allowable on each level - or restoring the entire
construction to its previous state if "something goes wrong somewhere".

Let us illustrate the induction of an ics for a line or a point in Drawboard. (This is done in
the same way for both kinds - since the corresponding method works on the type "dual".)
We will always assume (unless we explicitely state otherwise) that all projective
coordinate triples (for points as well as lines) have been normalized so that the sum of the
squares of the three components is equal to one. This amounts to introducing a unit sphere
S centered on the origin O of the euclidean "superspace” of [4] figure 4. Using this
sphere we can induce a "local metric” on P2by measuring the "local distance" of two
points A and B by (the minimum of) the corresponding arc-length on S of the two
"equatorial arcs” A’B” subtended by the projections of A and B onto S from O (figure
9). It is easy to see that this construction fails to produce a (global) metric on P2 but it
works locally and this "local metricity” gives us a way to determine two important things:

(1) if two points are close enough to be considered identical
(ii) if a point and a line are close enough to be considered incident.

< figure 9 >



Referring to figure 10, imagine that we have selected a CTU (superbase) for the points
and the corresponding (dually unified) ctu (superbase) for the lines of P2. Imagine
further that at some point of our constructional process we are creating the line-object a.
To create an ics on the line a we will project the CTU onto a from one of its vertices 1,
2 or 3. Using our local metric we can now determine which one of these points that is
"least close" to the line a. (Note that a cannot be close to all three vertices - unless our
CTU is "pathological”).Using this point (the vertex 2 in figure 10) as a centre, we ensure
ourselves of the numerically best conditioned "CTU-projection” onto the line a. The rest
of the vertices (1 and 3) are projected onto the Coordinate Interval points (1:0) and
(0:1) - they can be taken in any order - and the unit point U is projected onto the Unit
point (1:1). Hence we get a CIU coordinate system for the line a which serves as its ics
to keep track of any "intrinsic" points that we might want to create on a in the
constructional future.
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< figure 10 >



7. EXPERIMENTS WITH DRAWBOARD

7.1. STUDYING THE EFFECTS OF DUALIZATION

The process of dualizing a geometrical situation is often an important means to promote
the understanding of its structure and to increase the computational accuracy of some of its
participating components. The so called "Hough transform" in the field of image analysis
is a well known example: We can find the "best fitting" line to a given collection of points
by dualizing and looking for the best fitting point (dual-line) to the corresponding
collection of lines (dual-points). In the digital "pixel-world" this turns out to generate a
much better computational process - since we can easily count the number of times that
any point (pixel) is on a line of our collection. Doing so for each point in the dualized
image and choosing the "max-count-point" gives us a good candidate for the best fitting
dual-line and hence (by dualizing back again) for the best fitting line.

There are of course many ways to achieve a dualization of a given geometrical
construction in P2, The only thing that is required is to carry out a bijective mapping from
P2 to itself - taking points to lines and lines to points in such a way that the points on a
line are mapped onto the lines on a point and vice versa. In Drawboard, one way to
accomplish this is by making use of a classical construction known as "polarization in a
conic".

< figure 11 > |



Imagine a fixed conic C as in figure 11 and consider a point P. The "polarized image" of
P (the polar line of P with respect to the conic C) is the line p joining the points of
tangency (T, and T,) with C of the two tangent lines to C that pass through P. The
"dualization property"” of this construction is a consequence of the following "theorem of
reciprocity": If the point P is moved along a line q, the polar line p will be moving "along
a point” Q - i.e. it will be turning around Q.The point Q is called the polar point (or the
pole) of q with respect to C. Note that if P is "outside" of C, then p has two real points
of intersection with C and if P is "inside" of C - like Q - then p has no real points of
intersection with C. Finally, if P is located on C, then p coincides with the tangent to C at
P. We therefore have created a correspondence (P <--> p, q <--> Q) of the required
type, working fo all points and lines - and hence we have "implemented" a dualization of
P2, ‘
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< figure 14 >

The ﬁgtires 12 to 14 show the effect of polarizing a few simple geometrical constructions.
We can observe from figure 14 (and it can be proved analytically) that the polarized image
(polar reciprocal) of a point-curve with inflection-tangent p is a line-curve with a cusp-
point P. This duality can be used to develop an algorithm to compute inflection-tangents
by computing their dual cusps instead - using the same counting method as in the Hough
transform described above. This is a good example of how a deductive idea can emerge
from an interactive experiment. However, we will leave this idea for now and return to it
later (chapter 8.1) when discussing some deductive aspects of the projective
representation.

7.2. INTERACTIVE EXPLORATION OF GEOMETRICAL THEOREMS

An obvious way to use Drawboard is to study geometric constructions interactively. This
can greatly increase the intuitive feeling for the contents of a geometric theorem - since
such a theorem almost invariably deals with the effect of performing some geometrical
construction - stating different kinds of relations between the participating parts. These



relations can often be directly observed on the screen and their invariance tested "on line"
by performing various APMs of the "constructional indata" of the theorem.

As an example let us consider the so called "Pascal theorem” of classical projective
geometry (figure 15) - discovered by the 16 year old Blaise Pascal in 1642:

Theorem: Let the points A; ... Ag be the six vertices of a hexagon inscribed in a given
conic C. Consider the three pairs of opposite sides AjA; - AjAg . AjA; -

AgAgand A3A4 - AgA, and their corresponding points of intersection P, Q
and R. The three latter points are always on one line (x).
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< figure 15 > < figure 16 >

This theorem made such a deep impression on the scolars of his time that Pascal’s
construction was generally referred to as "hexagramum miysticum"!

By constructing this "mystical” configuration in Drawboard we can move the points A; ..
Agaround on the conic C and observe the corresponding positions of the "Pascal line" x.
This gives an excellent appreciation of the "dynamics" of the configuration which is
impossible to convey on a "static” piece of paper like this one.

By polarizing the Pascal configuration in the conic C (figure 16) we get an illustration of
the corresponding dual theorem - discovered by Brianchon around 1810:

Theorem: Let the lines a, ... ag be the six sides of a hexagon circumscribed on a given
conic ¢. Consider the three pairs of opposite vertices a;a, - a,a5 . 8,85 -
agagand a3a4 - aga; and their corresponding lines of intersection p, q
and r. The three latter lines are always on one point (X).

The Brianchon point X and the Pascal line x are of course pole and polar of each other
with respect to the conic C. It is a remarkable illustration of the subtlety of the concept of
duality that it took the geometers more than 150 years to discover the dual of the Pascal
configuration - and yet another 30 to realize that the two configurations were in fact dually
related.



As another example, let us consider the so called "Steiner conic" - a construction
discovered by the German geometer Jacob Steiner.

We have pointed out earlier (figure 5) that four lines on a point P have a well defined
cross-ratio. Hence each line on P can be characterized by its cross-ratio relative to three
fixed lines on P (see also the discussion in chapter 6.3).

Now, consider two points P, and P, and choose three lines a; , b; , ¢; on P; and three
lines a, , b, , ¢; on P, (figure 17). Hence, to each line 1; on Pj there corresponds a
unique line 1; on P, such that the two four-tuples of lines have the same cross-ratio i.e.

(a;by | e1ly) = (a2b; | €313)
Steiner’s theorem can now be expressed the following way:

JTheorem: The locus of the point of intersection of the lines l; and 1, is a conic that passes
through the points P; and P,.

The Steiner conic that corresponds to the line triples of figure 17 is depicted in figure 18.
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< figure 17 > < figure 18 >

7.3. AUTOMATED DISCOVERY OF GEOMETRICAL RELATIONSHIPS

A conceptually more interesting way to work with Drawboard is to use it as a generator of
"geometrical concepts” - by finding constructions whose resulting objects are independent
“of any choices made in each intermediate constructional step. Such objects can therefore
be regarded as functions of the constructional indata alone - thus representing a
geometrical concept involving only these. As an example, suppose that we start with the
constructional indata "circle" (i.e. an instance ¢ of this type) and perform the following



construction on it (figure 19):

Noavawe -

Choose two points A and B on the circumference of the given circle c.
Draw the line segment AB

Choose two points D and E on the circumference of c.

Draw the line segment DE.

Draw the midpoint normal m of AB.

. Draw the midpoint normal n of DE.

Select the common point O of m and n.

< figure 19 >

Suppose further that we introduce the following "fix-check" procedure after each step:

1. :
- Perform an APM on each intermediate object created up til "now"

2.

3.

Variation of choice:

that has a "non-zero" element of choice, and compare the position of each "zero-
choice" object before and after each modification.

Invariance under variation of choice:

If the change of position of a constructed object is "small enough” during all these
APMs, redo the construction of this object with a new set of intermediate
constructional choices.

If the positional change of the object is still "small enough" return the object and
consider it a function of the given constructional indata.

It is easy to see that running this fix-check procedure after each step of our construction
on the circle ¢ above will return the point O after the fix-check of construction step 7,
because O is the first object - the position of which is invariant under variation of each
intermediate choice that was made in its construction. Hence the system will recognize O
as a function of the constructional input data (c) alone, and therefore conclude that O is a
point that can be naturally associated with the circle ¢. The point O is of course the centre
of ¢, and thus the system has taken the input object "circle” and discovered the concept of
centre point for such an object.



In this way we can write programs in Drawboard that "go looking for geometrical
relations” (i.e. theorems) of various kinds. Of course the underlying algorithms will be
highly exponential and suceptible to "combinatorial explosion" if we just go on
constructing new objects by "combining everything with everything" in an indiscriminate
way. To utilize the system effectively we should have "a hunch of where to look” and
even better - an idea of "how to modify our search strategy if we dont find what we re
looking for" within reasonable computational time and space. This of course suggests an
interactive programming environment (of type LISP) where it is easy to write and test out
different search-strategies and strategy-modifying functions. But in spite of its lack of
"geometric intelligence” the brute force method can still produce interesting results - as is
shown by the following example:

Let us start with the indata "two points (P; and P,) and a third point (P3) collinear with
P, and P,", and see if we can program our system to find any geometrical objects
associated with this configuration. Referring to figure 20, we will start our constructional
process by choosing a line (w) on the point P3 and two points (Q; and Q,) on the line
w. Hence our "input configuration" consists of the point pair Py , P, and the point P -
all three on the line v, and our "choice configuration" is made up of the line w and the two
points Q; and Q, on w. Our search strategy will be extremely simple - we iterate the
system by letting it construct at each step all the "new" (i.e. non-existing up til now) lines
that can be constructed by the pairwise combination of existing points and then (dually) all
the new points that can be constructed from the totality of constructed lines. When we
have completed this (constructional) part of each iterative step, we perform a random
update of our choice configuration - i.e. we generate random positional modifications of
the line w and the points Q, and Q, until we succeed in making the system accept them
as an APM. Knowing now that "positions really have been modified" we can perform our
"fix-check” - which must be carried out on all "zero-choice-objects" that have been
constructed during the iteration. If we find any fixed objects, we break the iteration and
return with these - otherwise we let the construction go on into its next iterative step.

The result of performing this "structure-search” is shown in figure 20. In iteration step
number 1 the process creates 4 new lines and 2 new points (marked by 1 in step 1) - none
of which are fixed. Hence the process continues with iteration step number 2, creating 3
new lines and 6 new points (marked by 2 in step 2) - of which the point P4 turnes out to
be fixed. This point is in fact the well known "harmonic conjugate” of P5 with respect to
P; and P, - and it is characterized by the fact that (P;P,|P;P,) = -1. Hence the
system has in effect "discovered" the concept of harmonic conjugacy of a point with
respect to two other (collinear) points.



< figure 20 >



7.4. THE CONIC ON FIVE POINTS

Through the choice of a coordinate system (CTU) in P2, a conic will be represented by
(the zeroes of) a homogeneous quadratic polynomial S(x,y,z):

(8) ax2+by2+cz2+dxy+exz+fyz = 0

From this it is clear that we can require of a conic (C) that it should pass through five
given points (Py, ..., Ps) - and that this request will determine C uniquely, provided that
the five points are chosen so that the corresponding linear system of (five) equations in the
six unknown coefficients a, ..., f (the "coordinates" of C) has rank five. An experimental
question that is natural to ask in this respect is the following: How does the geometric
appearance of the conic C change with the variation of position of its parents - i.e. the
participating points? This kind of information is potentially useful e.g. for the study of
curvature phenomena in the field of shape analysis.

7.5. LINEAR FAMILIES OF CONICS - DISTRIBUTION OF SINGULAR
POINTS

Given two conics §; and S, we can form the set of all conics the equations of which are
linear combinations of the equations of §; and S;:

(9) H1S1+uS; =0

This 1-dimensional linear family of conics is called the pencil on §; and S,;. Two
examples of pencils of conics are shown in figures 21 and 22.

< figure 21 > < figure 22 >



The corresponding 2-dimensional linear family on three given conics S, , S;and S,
(10) ulsl+u2$2+u3s3 =0

is called the net of conics on S;, S; and S,.

< figure 23 >

A fellow researcher in mathematics here at the RIT in Stockholm a while ago was thinking
about the following problem: Consider three pairs of lines in P2 with one line of each pair
passing through a certain point A and the other line of each pair passing through another
point B (figure 23). The three line-pairs can be regarded as (degenerated) conics C;, C,,
and C,. Now consider the net of conics on these three. A generic member of this family
will not be degenerated, but for certain values of the "net-coordinates” (uy:p,:p3) the
corresponding conic will degenerate into a pair of lines and hence posess a singular point
(the point of intersection of the two lines).

The question was now:

How are these singular points of the net distributed?

< figure 24 >



It didnt take us long to get an idea by performing an experiment in Drawboard. We
simply plotted the curves in the net for some suitably chosen values of (u;:p5:p3). The
result (figure 24) indicated that the singularities were located on the conic through the five
points A, B (and the singular points of) C;, C, and C;, and the more we plotted the
stronger the indications grew. Of course the line AB was a natural candidate to be part of
the singular locus, and with a bit of "parameter fiddling" we were able to produce
experimental support of this idea (figure 25).

< figure 25 >

By now we had found a conic and a line of singular points - hence the singular locus had
to be at least of degree 3 (a cubic curve). We also had developed a strong "gut feeling”
that there were no singularities left, i.e. that the singular locus was in fact a cubic
(factoring into a conic and a line). Having gotten this far we were encouraged to summon
enough mathematical energy to prove our hypothesis geometrically. Later on it turned out
that all this is a consequence of a general theorem concemning the singular loci of algebraic
curves but that is another story!



7.6. RAYTRACING THE REFLECTIONS FROM A SLIGHTLY
PERTURBED FOCAL-POINT-SOURCE OF LIGHT
IN A CONIC MIRROR

It is a well known fact that a mirrorized conic will reflect the light-rays from a point-
source situated at one of its two focal points in the direction of the other (figure 26, left).

4/

< figure 26 >

Hence a focal-point-source will remain a focal-point-source after any number of
reflections in the conic. This is of course a highly unstable condition, and if the initial
focal-point-source is ever so slightly perturbed - either by moving the point-source a little
"out of focus" or by disrupting the point-source property itself - the successive reflections
will scatter the light-rays "all over the place”. In the context of studying this perturbed
point-focus situation it is natural to look for types of perturbations that remain invariant
under reflection in the conic - i.e. that are reflected into perturbations of the same type. To
see an example of this kind of behaviour, let us consider a conic mirror in the form of an
ellipse C with focal-points F; and F,. It is a remarkable geometrical fact that the
collection of all rays that are tangent to any ellipse (or any hyperbola) that is confocal to C
(such as the ellipse E or the hyperbola H in figure 26, (middle and right) will be reflected
by C into itself. Of course these "confocal perturbations" are not perturbations at all - in
the strict sense of the word - since they can’t be created by an arbitrarily small change of
the point-focus configuration. In the search for real point-focus perturbations with some
sort of invariance property under reflection, it became interesting to consider perturbations
of the following type: Consider a small ellipse E with its major axis coinciding with the
major axis of C and one of its focal-points coinciding with the focal-point F; of C, and
perturb the rays emanating from F; in such a way that they are all tangent to E (figure 27,
left). How will this perturbation behave under reflection? Will the reflected rays be tangent
to a similar ellipse centered on the other focal-point F,? This question may seem a bit
strange to ask, but there were other geometrical facts indicating that the answer might in
fact be in the affirmative.



< figure 27 >

The hypothesis formulated above can easily be tested experimentally in Drawboard. This
provides a good example of a "euclidean problem" embedded in the general projective
setting - which is how Drawboard represents all geometric information internally. The test
can first be performed with the choice of E as a circle - since this extra symmetry will give
us an intermediate result - telling us if it’s meaningful to continue or not. Figure 27

shows the initial "circular perturbation of the focal-point-source as well as the result of
two successive reflections. Obviously the answer to our question is in the negative and the
hypothesis must be rejected. The asymmetry of the first reflection in figure 27 is due to
the asymmetry of the start configuration of rays. The rays carry a direction - from the
point of tangency with E and towards the point of impact with the mirror C - and only the
part between these two points is drawn in the "start configuration" of figure 27. Figures
28 to 30 show the result of a few other experiments with this configuration. In figure 28
we have translated the "light-source-ellipse” E so that F; coincides with a point of
minimal curvature on E, and in figure 29 we have turned the "input-rays" of figure 28
around and made them travel in the opposite direction. It is interesting to observe that this
simple change in the input has quite a dramatic (and highly non-symmetrical) effect on the
reflected configuration - because of the directiongl asymmetry discussed above. Finally, in
figure 30 we have placed a point source of light in the centre of C. The reflected
configuration shows two very interesting cusps that seem to be located in the focal points
F; and F, of the mirror C. The author hasn’t proved this mathematically, but he would
be very surprised if the focal points didn’t turn up in a closer examination of these cusps -
since the smell of them is so strong! The point to be made here is not to produce a proof,
but to point out how easy it is to generate a variety of "experimental surprises" that help to
deepen the intuition and promote the feeling for "what’s going on" in the problem under
study.



< figure 28 >
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8.2. AN ALGORITM FOR COMPUTING THE 3D-POSITION
OF A PLANE FROM THE "CENTRE-INFINITY"
POLARITY OF A CENTRAL CONIC

It is easy to see (figure 13) that the centre point (M) of a central conic (e.g. an ellipse) and
the line at infinity (m) have a pole-polar relationship - they are the polarized images of one
another. This fact can be used to determine the 3D orientation of a plane x in which we
are observing a central conic C with its centre-point M. Referring to figure 32, the polar
line m of the point M with respect to C is the line at infinity in x. Since all pole-polar
relationships are projectively invariant, if we polarize M~ (our image of M) in the conic
C’ (our image of C) the resulting line m” must coincide with our image of the line of
infinity (m) in x. Hence m’ is identical to the "horizon-line" of our image of &, and if we
compute the plane containing m” and our point of observation O, we have a plane parallell
to & - and hence the orientation of n in space. Of course this method of orientation is
highly noise-sensitive in the case of a single observation - especially if the deviation of M”
from the centre-point of C” is small, which would be the case if we were observing the
plane ©t almost "head-on" - i.e. in a direction close to the normal of . But if we were to
observe e.g. a plane field of oil-barrels (with their centre-plugs) from a direction that is
"tilted enough" relative to the normal of the plane, both the statistics and the larger centre-
deviation would contribute toward a more robust computational process.

8.3. AN ALGORITHM FOR RECONSTRUCTING THE 3D-MOTION
OF A PLANE FROM TRACKING THE IMAGE
OF FOUR OF ITS POINTS

We will finish our list of "deductive examples” using projective techniques by describing
a projective algorithm for determining the motion of a rigid planar patch from two matched
images of four of its points. This is a well known problem in the field of image analysis,
and it has been studied by several people using a variety of different approaches (see e.g.
[3], [5]) and [8] ). The one that is used here is characterized by its explicit use of the
sphere circle (see chapter 2) as a means to express the metric information present in the
concept of "rigid motion" projectively. Hence it is another example of a "projective
embedding" of a euclidean configuration.



< figure 33 >

Mathematical formulation :

Consider a plane ©t in P3 with four marked points A, B, C and D. Imagine that we are
observing © through a "pinhole" camera - i.e. projecting the points in x from a fixed
point E (the pinhole lense or the "eye") onto a fixed plane p (the image plane or the
"retina"). Let the images of A, B, C and D be a, b, ¢ and d respectively (figure 33).
Moving = rigidly (by subjecting it to the unknown motion M) to make it coincide with
another plane 1" and observing the change of the image in p of the marked points (now
located at A°, B, C” and D’ in ©t") induces a map m : p --> p taking a -->a°, b --> b’
etc. It can be shown (see [5] ) that m s a projectivity - and hence that its action can be
expressed by a (non-singular 3x3) matrix operating on the (projective) coordinates of the
points in p. This matrix (which can be computed from "image data") has at least one real
eigenvector v and this vector corresponds to a fixed point of the map m. The idea of the
algorithm that we shall present is to use this fixed point to decompose the desired motion
M into a rotation R around v (which also can be determined directly from image data)
followed by an (unknown) translation T along v. This decomposition (M = TR) is valid
because of a well known theorem of classical mechanics, and it leaves us with only one
single parameter left to be determined - the "size" (or distance) of the translation along v.
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< figure 34 >

This can be done by "observing the effects at infinity" of the motion M. Let the plane at
infinity be called =, and let the lines at infinity in x and &” be called h and h’
respectively.Since a motion is a special type of affine transformation it must leave =,
invariant as a whole. Hence M induces a projectivity M, : &, --> t_ taking h --> h”. It
is easy to see that the translational distance that we are looking for can be determined from
a complete knowledge of the map M... By the fundamental theorem of projective
geometry, M_, is determined by its action on four generic points (i.e. four points - no
three of which are collinear). So far we only know the action of M_, on two such points -
namely any two points on the line h. Choosing two such points X and Y (figure 34),
their images (X“ and Y°) under M_, can be obtained by projecting them from E onto 1 -
hence obtaining the image points x and y, mapping these with m to x” and y~ and finally
projecting the latter points back again onto x.. Note that the points on h are the only
points‘in %, that can be mapped by M_, in this way - i.e. by transferring to the "image
map" m. ‘



< figure 35 >

To find the image under M, of two more "independent” points we can make use of the
sphere circle C_, in x... Since M is a euclidean isometry it must transform the euclidean
fundamental form (and hence the sphere circle) into itself. Choosing two points X and Y
on the line h (with images X" and Y’ on h°), we can therefore obtain the necessary
information in the following way: Constructing an arbitrary tangent from X to C_, gives
us a point of tangency Z (figure 35). Since h is real and C_, is purely imaginary, h cannot
be tangent to C_, and therefore Z must be non-collinear with X and Y. Now, tangency is
a projectively invariant condition and hence the image Z° of Z under M,, must be one of
the two point of contact between C,, and its two tangent lines through X°. Which one to
choose is decided by inspecting the resulting value of the translational distance - which is
computed from an overdetermined linear system of equations. It turns out that choosing
the wrong point of tangency for Z* will produce a value with a large residual while
choosing the right point will produce a value with (almost) no residual at all. The final
(fourth) point that is needed to gain complete control of the map M., is provided by the
polar point H of the line h with respect to C... Since polarity is another projectively
invariant relation, the image H" under M., of the point H must be the polar point of the
line h” with respect to C,.. Referring to figure 35 it is obvious that we can choose our
initial points X and Y so that none of them is collinear with Z (this can never happen as -
we already know) or H. Hence we have determined the image under M., of four generic
points (X, Y, Z and H) and therefore we have the information we need to compute the
required translational distance.



9. CONCLUDING DISCUSSION AND FUTURE WORK

In this paper we have presented a projective framework for representing geometric
structure in a unified way. We have demonstrated how this representation can be exploited
to embedd all kinds of geometric information against a "universal" background, and we
have given a few algorithmic examples of the benefits that can be extracted from this point
of view. We have also presented an interactive geometric "tool-box" - called Drawboard -
that is built entirely on the projective representation, and we have illustrated how it can be
used to promote the understanding of geometric phenomena in general - including the
dynamic behaviour and the invariance properties of a geometric construction. Finally , we
have demonstrated the "experimental mode" of using Drawboard in order to gain insight
into geometric problems from other areas of mathematics. It is our opinion that the
collection of these ideas make a strong case for the importance of the projective
representation in the entire field of geometric modelling. The underlying reason for this is
first of all that "everything can be expressed projectively" and secondly that "the
expressions are valid without any exceptions whatsoever". In "ordinary" euclidean
geometry there is the old familiar fact that "two lines in a plane have a common point
except when they are parallel”. This innocent looking exception creates "a mountain of
combinatorial complexity" when the number of participating lines grows large. In
projective geometry "two lines in a plane have a common point with no exceptions, and
it is precisely the lack of such exceptions that gives projective geometry its great power of
conceptual and representational unity.

Regarding future work, it is of course quite obvious that the implementation of
Drawboard presented here is still in its infancy. The full 3D-version ("Drawspace") is an
endeavour that involves difficulties of a different order of magnitude. Nevertheless, the
benefits of having such a system would in our opinion more than compensate for the
labours of constructing it. Just to mention one area of application, the CAD/CAM systems
that could be built on top of a projective Drawspace system would be able to utilize its
representational powers to implement many geometric features unheard of in the leading
systems of today. One such potential feature well worth exploring is the construction of a
decent (i.e. generic) "intersection-algorithm" for computing and geometrically
representing the set-intersection of two general 3D geometrical bodies. This involves
representational techniques from other areas of mathematics - including differential
geometry and combinatorial topology - to generate a "mathematically decent” description
of a general surface in 3D. It is our ambition to integrate such "classical gems" of pure
mathematics into the 3D-expansion of the projective "world-view" discussed here - in
order to exploit the representational and computational "synergy" of such a mixture in
solving a variety of different geometric "engineering" problems.
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