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On the use of exterior algebra in image analysis

It is a well known (and an- P
noying) fact that the per- .
spective transformation "
; 2 .
(1) P, :R\{P} > ~R

is non-linear.

This difficulty can be handled in various ways, e.g. by introducing homogeneous
coordinates in the usual manner, or by setting up a projective coordinate system
and describing the perspective transformation projectively (see [8].)

These methods have an important drawback, they are coordinate dependent, i.e.
they rely on the introduction of a specific coordinate system, which has to be
chosen in a more or less ad hoc way. Of course this is tolerable in many cases
where a coordinate system presents itself naturally e.g. in the analysis of a single
image of a fixed object from a fixed (known) viewpoint. When motion phenomena
are considered, however, the coordinate dependent descriptions often introduce
considerable analytical complexity, and the benefits of a coordinate free description
would be substantial.

It is a pleasant mathematical fact that there exists such a coordinate free descrip-
tion of the linear part of projective geometry, i.e. the points, lines, planes.... It is
called the exterior algebra (or Grassmann algebra) and it is closely related to
the algebra of subspaces of a finite dimensional vectorspace as we shall see in this

paper.

Mathematical background

Let V be an n-dimensional vectorspace over R. The Grassmann algebra over V,
called A(V) is an associative algebra over R with the properties

(2) A(V) is a graded algebra, that is
AV)=rV)on(V)on(V)e...oNn(V)o...
where each A;(V) is a subspace of A(V') and for
u € AN(V), vEA;(V) we have u Av € Ay ;(V)
where A denotes multiplication in A(V)

(3) Ao(V)=Rand A (V) =
(4) A(V) together with the identity 1 € R generate A (V).
(5) tAz=0 Vze (V)

priAN...ANz, = 0
(6) TIN...AZy # O = p=0
T1y...y Tn € N(V)

The properties (2), . (6) determine A(V) uniquely, i.e. any associative algebra
over R satisfying them is isomorhic to A(V). :
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The Grassmann algebra A(V') can be realized as the quotient algebra T'(V)/I,
where T(V) is the tensor algebra over V and I, is the ideal generated by the
elements of the form 2@z , z € V.

The following properties of the algebra A(V') are easily established.

(M
(8)

(9)
(10)

uAv=(=1)%vAu, ue A V), ve V)

If {e1,...,e,} is a basis of V, then {ey} is a basis of A(V), where
% runs over all subsets of {1,...,n} including the empty set ; where
ey =€ A...Ae;, with i, <... < i, when ¢ is the subset {¢;,...,%,} of
{1,...,n} ; and where ey, = 1 when 3 = ® (the empty set).

In particular
A(V)E2Rand A, j(V) = {0}, 7 >0.

Moreover, it follows that
dimA(V) =27

g vectors uy,...,u, € V are linearly independent if and only if
Ui A...A Uq # 0 .

Hfu =Yanve, ..., up = anty
are r linear combinations of r vectors
V1, ..., U €V , then

up A Ay, =det(a ) viA.. A,

An excellent account of the basic properties of the algebra A(V) can be found in
- Warner [1].

An element u € Ay (V) is called decomposable if there are v; , ... , v, € Ay(V)
such that u =v; A... A v,

Otherwise u is called indecomposable.

(11)

(12)
(13)
(14)

(15)

(16)

If dimV < 3 then every u € A,(V) is decomposable. If dimV > 3 and
{e:} is a basis of V' then e; A e; + e3 A e4 is indecomposable.

If u € A2(V) , then u is decomposable if and only if u A u = 0.
All u € A,_1(V) are decomposable.

If W is a p-dimensional subspace of V, then A, (W) is a one-dimensional
subspace of decomposable elements of A,(V).

If Y is a one-dimensional subspace of A,(V') consisting only of decompos-

able elements, then Y = A, (W) for some p-dimensional subspace W of
V.

Let W and X be subspaces of V of dimensions p and g, respectively, and
let we AY(W), 2 €A(X), w#0,25#0
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Then we have

(%) X C W if and only if there is a decomposable y such that w =z A y.
(€1)) XNW=0ifandonlyiftAw#0

(i) HXNW =0, then wAz is a basis of Apy(W + X)

(¢v) W={v:veA(V)and vAw=0}.

In [8] it is described how the points, lines and planes of P? (real projective 3-space)
can be modelled by the 1-, 2-, and 3-dimensional subspaces of R* respectively.

Let A, B and C be points (vectors) of R* different from the origin O, and not all in
the same 2-d subspace. Then the three points determine three linearly independent
1-d subspaces OA, OB and OC of R?, and hence three different non-collinear points
A, B and € of P2

Rl,

Consider the two linearly independent vectors A and AA + uB (u # 0), spanning
the 2-d subspace OAB of R*. Since A A A = 0 we have

@17 ANAMA+pB)=AAANA+pAANB=pAAB.

Hence the subspace OAB is characterized by the element A A B € Ay(R*) modulo
non-zero scaling. Introducing the equivalence class

(18) [AANB)={uAAB : p+#0}
we have thus demonstrated that

(19)  the 2-d subspace OAB of R* «— [AAB]
and hence:
the line AB of P®* «— [AAB].

Considering in a similar way the 3-d subspace OABC of R*, we get

(20) AANBAMA4+puB+vQ)=vAABAC
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where v # 0 since the three vectors A, B and AA + uB + vC are assumed to span |
OABGC.

Hence we have

(21)  the 3-d subspace OABC of R* «— [AABAC]
and by translating this
to projective 3-space:

the plane ABC of P> «— [AABAC].

If we denote by A{(V) /. the set of all equivalence classes of decomposable elements
in A;{(V) under the equivalence relation [ ], we can sum up these observations in
the following correspondencies:

(22) Ao(RY/n {1}u {0}
A(RY/.  «— {points of P*} U {0}
A(RY)/. — {lines of P?} U {0}
As(RY)/. «— {planes of P?} U {0}
ANRY/w — P3u {0}

Perspective transformation by multiplication in A(R")/.

Let us now return to the perspective transformation (1). By projectifying the
situation (see [8]) we get a map

(23) P,: P3\{P} — P?

The reason for doing so is twofold:

First, the vanishing points become explicit and do not differ from any other points,
and second, the transformation becomes linear when regarded as a mapping of
subspaces in R*.

A minor nuisance is provided by the fact that a projective transformation cor-
responds to a whole class of equivalent linear (point) transformations, each one
differing from any other by a non-zero multiplicative constant, reflecting the fact
that homogeneous coordinates (as well as subspaces) are scale invariant.

Recalling that P is the point of IP? corresponding to the position of the eye, we
have for any point Q # P, any line QR not on P and any plane QRS not on P:

Q —— the line PQ
(24) QR > the plane PQR
QRS —— the 3-space PQRS
Here we have adopted a pre-retina viewpoint, i.e. we have not yet intersected the

geometric objects PQ, PQR and PQRS with the image plane, thus keeping a
record of all possible preimages.
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Now, by (22), this version of the perspective transformation has a natural inter-
pretation as a map

(25) AR PALT A@y).

which could be called wedging by the eye

where

(26) Ao(R*)/~ > A > [AP] € A(RY)/
MRY/~ 3 [Q] = [P AQ] € Ay(RY)/n
AN(RY)/~ > [QAR] — [PAQAR] € A(RY)/.
AR/ D [QARAS] — [PAQARAS]€A(RY/o
AMRY/w D [QARASAT] - [PAQARASAT]=0

Note that P A[-] = [P A ] for any element - of A;(R?).

Also note that if any of the geometric objects @Q,QR or QRS are on P, the
corresponding elements in (26) are mapped to zero. Hence the map (25) also
covers the projectively forbidden cases.

Grassmann co ordinates

We have now seen how the Grassmann algebra on a vectorspace V allows us to
perform coordinate free geometry on the subspaces of V and interpret the results
in the corresponding projective space.

Let us denote by Si(V') the set of all k-dimensional subspaces of V. Suppose that
we coordinatize V' by introducing a basis B = {e;,...,e,}. This will induce a
coordinatization of the elements of Sk(V). The coordinates thus attached to a

given element [W] € Si(V) are called the Grassmann coordinates of [W] and will
be denoted by [W],.

To see how they are obtained, let us choose a basis F = {fi,..., fi} for the
subspace [W] € Si(V'). We then have

27 f,-::E/\j;ej , t=1,...,k , A;€R

i=1

By (5), (7) and (10) we can now write
(28) Wl=[AAAR]=1Q0 Xinea) Ao A Nires] =

n n
=-'[Z...Z)\jll'...-Ajkkejl/\...Aejk]‘:
n Jk

= [ Z ( Z (Sgn j)’\ill BEEE AJ'kk)ei,(i]
'I’C{l""»ﬂ} {jlv-"vjk}:'/’ ‘
4 increasing
1¢l=k
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where the outer sum is over all selections ¢ of k elements from {1,...,n} taken
in increasing order, and the inner sum is over all permutations j of the elements

{15+, J&} of a fixed 9.
Now, it follows from (8) that

(29) {lew] : [¥] = k}

is a basis of Sx(V), and hence we have obtained in (28) a coordinate expansion of

W]
(30) W= 37 dyley]
l¥l=k
where
(31) Ap= D (sgni)hjce. Ak
{5110 }=9

Hence the Grassmann coordinates of [W] are

(32) Wlo = 9] = £},

If we form the matrix

I l )\11 .o )‘lk
’ I | Anl ) ’\nk

wesee that if Y = {51, ...,Jk}, J1 <... <Jk, Ay is given by the k X k minor of
the matrix [F]g obtained by choosing the k rows ji,..., j; corresponding to .

Note that the coordinates {)\,} are homogeneous, since by scaling the vectors f;
of F, we can change the numbers {Ay} by any non-zero scaling factor.

In order to see that the Grassmann coordinates of [W] are well defined, let us
select another basis of [W]

’(34) F={fl,....fi}.
We then have

(35) fi=3 e , i=1,...,k
=1
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and since both F and F’ form a basis of [W]

(36) fi= f:aﬁf,- »  det (a;i) #0.

Jj=1

" Substituting (27) into (36) we get

k n n k
(37) fi=)Y aji(lz_:l Aijee) = D (D0 Mijasi)ee

i=1 £=1 j=1

and comparing (35) with (37) we have

k
(38) X =D Aijai
J=1

or in matrix form, with (a;) = A

(39) 175 = [Fls - A

Hence, the corresponding k X k minors of [F']g and [F]g are related by the same
non-zero scaling factor (det A), i.e.

(40) - N, = Xy - (det A).

Therefore the (’,:) -tuples {),,} and {),} express the same homogeneous coordinate
tuple and writing

(41) o] = {ady : @ # 0}

we have
(42) W]y = [Ay] = [Xy].

Hence the Grassmann coordinates (32) of the subspace [W] depend only on the
choice of basis B for the entire space V, and not on the choice of basis F,
representing the subspace [W] .
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Projective transformations of Grassmann coordinates

\

Let us start with a linear map

(43) T:V->V

This map induces an algebra homomorphism

(44) ‘ AT : A(V) = A(V)

which on decomposable elements is defined by

(45) AT(ryA...Av)=Tvi A...ATv,

and which is extended linearly.

The map AT in turn induces a map [AT] from the set A(V')/. of all subspaces of
V into itself

(46) [AT]: A(V)/n = A(V)/~
[W] —[AT(W)]

What happens to our k-dimensional subspace [W] under the mapping [AT], i.e.
what are the Grassmann coordinates of the subspace [AT|[W]?

To answer this question we first pick a representative W € A,(V) of the subspace
[W] and study the action of AT on it.

AT is an algebra homomorphism of degree zero, hence a direct sum

(47) » /\T‘-:?/\kT y

where
(48) AT /\k(V) — /\k(V)

is a linear map from the linear space Ax(V) into itself.

By (8), the basis B = {e1,...,en} of V induces a basis of Ax(V):

(49) {ey: ¥ C {1,...,n}, ¢ increasing, || = k}

where, by convention ¢ = {t4,...,%¥} is assumed to be ordered increasingly, so
that
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(50) i <P;  if i<

To get the corresponding matrix representation of AT, we must simply check its
action on the basis elements e, of Ax(V).

Assuming the matrix of the map T in the basis B to be A = (a;;), we get

(51) AT (ey) = NT(eg Ao Ay, =

=T6¢1/\.../\Te¢k=

n n
= (D dipen) A A(YD aipes,) =

f1=1 =1

n

n
= Z...Ea,-l,l,l-...-a,-k,l,ke,-ll\.../\e;kz

t1=1 =1

= > (Y (sgni)aiy, ... iy )es =
0C{1,.n}  {i1,rin}=0

0 increasing

l6l=k
Aoy v oo Qhyyy
=2 | €6
|9|=k\ gy -+ Qg |

Ag,p

where 6 is assumed to be ordered increasingly, just as .

Hence we can summarize (51):

‘ (52) /\kT(e,,,) = Z Ag,d,eo
6=k

and denoting the matrix of A,T by A we have from (51)

(53) Ar = (Aoy)

which is simply the (’,:) X (Z)-matrix of all k x k-minors of the matrix A, arranged

in an order that corresponds to the ordering of the basis elements {e,} of Ak(V).
In general, lexicographic ordering of the e, is a natural choice. To transform the
Grassmann coordinates of [W] we now simply observe that

(54) [(ATIW Ny = [MT (W) = [Ai] - W]y
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where [A)] = {@ Ak : a # 0} and the last step of (54) is ordinary matrix multipli-
cation. Hence [Aj] is the matrix representation of [A;T] and the transformation of
subspaces induced by a linear map T': V — V is performed by the corresponding
matrix multiplication of the Grassmann coordinates.

We can sum up the situation in the following diagrams:

v T, v
(55) | [ls | L [ls
R~ _4, R

AN T] A V)

(56) (v | I
rG)/, ARG

By a choice of basis B for the space V the linear map T': V — V is represented (as
usual) by the matrix operator A : R* — R" as depicted in (55). This induces
a representation of the corresponding linear subspace transformation operator
AT] = GB[/\;,T] whose action on a k-dimensional subspace [W] is represented by

multlphcatlon of its Grassmann coordinates [W], by any one of the matrices [Ak]
according to (56).

Conclusion

We have demonstrated in a few pages the basic properties of exterior algebra and
Grassmann coordinates, and sketched briefly how they can be applied to the study
of vision. It seems to us that the advantage of doing so lies mainly in the possibility
of achieving a unified and systematic description of a whole family of geometric
interrelationships inherent in a 3-d scene. Each of these relations is often more
efficiently described in its own tailor-made coordinate system, but the analysis of
their interaction ought to benefit from a coherent, universal framework with no
possible exceptions in its way of describing things.
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